Theory Transcendental
section ‹Power Series, Transcendental Functions etc.›
theory Transcendental
imports Series Deriv NthRoot
begin
text ‹A theorem about the factcorial function on the reals.›
lemma square_fact_le_2_fact: "fact n * fact n ≤ (fact (2 * n) :: real)"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "(fact (Suc n)) * (fact (Suc n)) = of_nat (Suc n) * of_nat (Suc n) * (fact n * fact n :: real)"
by (simp add: field_simps)
also have "… ≤ of_nat (Suc n) * of_nat (Suc n) * fact (2 * n)"
by (rule mult_left_mono [OF Suc]) simp
also have "… ≤ of_nat (Suc (Suc (2 * n))) * of_nat (Suc (2 * n)) * fact (2 * n)"
by (rule mult_right_mono)+ (auto simp: field_simps)
also have "… = fact (2 * Suc n)" by (simp add: field_simps)
finally show ?case .
qed
lemma fact_in_Reals: "fact n ∈ ℝ"
by (induction n) auto
lemma of_real_fact [simp]: "of_real (fact n) = fact n"
by (metis of_nat_fact of_real_of_nat_eq)
lemma pochhammer_of_real: "pochhammer (of_real x) n = of_real (pochhammer x n)"
by (simp add: pochhammer_prod)
lemma norm_fact [simp]: "norm (fact n :: 'a::real_normed_algebra_1) = fact n"
proof -
have "(fact n :: 'a) = of_real (fact n)"
by simp
also have "norm … = fact n"
by (subst norm_of_real) simp
finally show ?thesis .
qed
lemma root_test_convergence:
fixes f :: "nat ⇒ 'a::banach"
assumes f: "(λn. root n (norm (f n))) ⇢ x"
and "x < 1"
shows "summable f"
proof -
have "0 ≤ x"
by (rule LIMSEQ_le[OF tendsto_const f]) (auto intro!: exI[of _ 1])
from ‹x < 1› obtain z where z: "x < z" "z < 1"
by (metis dense)
from f ‹x < z› have "eventually (λn. root n (norm (f n)) < z) sequentially"
by (rule order_tendstoD)
then have "eventually (λn. norm (f n) ≤ z^n) sequentially"
using eventually_ge_at_top
proof eventually_elim
fix n
assume less: "root n (norm (f n)) < z" and n: "1 ≤ n"
from power_strict_mono[OF less, of n] n show "norm (f n) ≤ z ^ n"
by simp
qed
then show "summable f"
unfolding eventually_sequentially
using z ‹0 ≤ x› by (auto intro!: summable_comparison_test[OF _ summable_geometric])
qed
subsection ‹More facts about binomial coefficients›
text ‹
These facts could have been proven before, but having real numbers
makes the proofs a lot easier.
›
lemma central_binomial_odd:
"odd n ⟹ n choose (Suc (n div 2)) = n choose (n div 2)"
proof -
assume "odd n"
hence "Suc (n div 2) ≤ n" by presburger
hence "n choose (Suc (n div 2)) = n choose (n - Suc (n div 2))"
by (rule binomial_symmetric)
also from ‹odd n› have "n - Suc (n div 2) = n div 2" by presburger
finally show ?thesis .
qed
lemma binomial_less_binomial_Suc:
assumes k: "k < n div 2"
shows "n choose k < n choose (Suc k)"
proof -
from k have k': "k ≤ n" "Suc k ≤ n" by simp_all
from k' have "real (n choose k) = fact n / (fact k * fact (n - k))"
by (simp add: binomial_fact)
also from k' have "n - k = Suc (n - Suc k)" by simp
also from k' have "fact … = (real n - real k) * fact (n - Suc k)"
by (subst fact_Suc) (simp_all add: of_nat_diff)
also from k have "fact k = fact (Suc k) / (real k + 1)" by (simp add: field_simps)
also have "fact n / (fact (Suc k) / (real k + 1) * ((real n - real k) * fact (n - Suc k))) =
(n choose (Suc k)) * ((real k + 1) / (real n - real k))"
using k by (simp add: field_split_simps binomial_fact)
also from assms have "(real k + 1) / (real n - real k) < 1" by simp
finally show ?thesis using k by (simp add: mult_less_cancel_left)
qed
lemma binomial_strict_mono:
assumes "k < k'" "2*k' ≤ n"
shows "n choose k < n choose k'"
proof -
from assms have "k ≤ k' - 1" by simp
thus ?thesis
proof (induction rule: inc_induct)
case base
with assms binomial_less_binomial_Suc[of "k' - 1" n]
show ?case by simp
next
case (step k)
from step.prems step.hyps assms have "n choose k < n choose (Suc k)"
by (intro binomial_less_binomial_Suc) simp_all
also have "… < n choose k'" by (rule step.IH)
finally show ?case .
qed
qed
lemma binomial_mono:
assumes "k ≤ k'" "2*k' ≤ n"
shows "n choose k ≤ n choose k'"
using assms binomial_strict_mono[of k k' n] by (cases "k = k'") simp_all
lemma binomial_strict_antimono:
assumes "k < k'" "2 * k ≥ n" "k' ≤ n"
shows "n choose k > n choose k'"
proof -
from assms have "n choose (n - k) > n choose (n - k')"
by (intro binomial_strict_mono) (simp_all add: algebra_simps)
with assms show ?thesis by (simp add: binomial_symmetric [symmetric])
qed
lemma binomial_antimono:
assumes "k ≤ k'" "k ≥ n div 2" "k' ≤ n"
shows "n choose k ≥ n choose k'"
proof (cases "k = k'")
case False
note not_eq = False
show ?thesis
proof (cases "k = n div 2 ∧ odd n")
case False
with assms(2) have "2*k ≥ n" by presburger
with not_eq assms binomial_strict_antimono[of k k' n]
show ?thesis by simp
next
case True
have "n choose k' ≤ n choose (Suc (n div 2))"
proof (cases "k' = Suc (n div 2)")
case False
with assms True not_eq have "Suc (n div 2) < k'" by simp
with assms binomial_strict_antimono[of "Suc (n div 2)" k' n] True
show ?thesis by auto
qed simp_all
also from True have "… = n choose k" by (simp add: central_binomial_odd)
finally show ?thesis .
qed
qed simp_all
lemma binomial_maximum: "n choose k ≤ n choose (n div 2)"
proof -
have "k ≤ n div 2 ⟷ 2*k ≤ n" by linarith
consider "2*k ≤ n" | "2*k ≥ n" "k ≤ n" | "k > n" by linarith
thus ?thesis
proof cases
case 1
thus ?thesis by (intro binomial_mono) linarith+
next
case 2
thus ?thesis by (intro binomial_antimono) simp_all
qed (simp_all add: binomial_eq_0)
qed
lemma binomial_maximum': "(2*n) choose k ≤ (2*n) choose n"
using binomial_maximum[of "2*n"] by simp
lemma central_binomial_lower_bound:
assumes "n > 0"
shows "4^n / (2*real n) ≤ real ((2*n) choose n)"
proof -
from binomial[of 1 1 "2*n"]
have "4 ^ n = (∑k≤2*n. (2*n) choose k)"
by (simp add: power_mult power2_eq_square One_nat_def [symmetric] del: One_nat_def)
also have "{..2*n} = {0<..<2*n} ∪ {0,2*n}" by auto
also have "(∑k∈…. (2*n) choose k) =
(∑k∈{0<..<2*n}. (2*n) choose k) + (∑k∈{0,2*n}. (2*n) choose k)"
by (subst sum.union_disjoint) auto
also have "(∑k∈{0,2*n}. (2*n) choose k) ≤ (∑k≤1. (n choose k)⇧2)"
by (cases n) simp_all
also from assms have "… ≤ (∑k≤n. (n choose k)⇧2)"
by (intro sum_mono2) auto
also have "… = (2*n) choose n" by (rule choose_square_sum)
also have "(∑k∈{0<..<2*n}. (2*n) choose k) ≤ (∑k∈{0<..<2*n}. (2*n) choose n)"
by (intro sum_mono binomial_maximum')
also have "… = card {0<..<2*n} * ((2*n) choose n)" by simp
also have "card {0<..<2*n} ≤ 2*n - 1" by (cases n) simp_all
also have "(2 * n - 1) * (2 * n choose n) + (2 * n choose n) = ((2*n) choose n) * (2*n)"
using assms by (simp add: algebra_simps)
finally have "4 ^ n ≤ (2 * n choose n) * (2 * n)" by simp_all
hence "real (4 ^ n) ≤ real ((2 * n choose n) * (2 * n))"
by (subst of_nat_le_iff)
with assms show ?thesis by (simp add: field_simps)
qed
subsection ‹Properties of Power Series›
lemma powser_zero [simp]: "(∑n. f n * 0 ^ n) = f 0"
for f :: "nat ⇒ 'a::real_normed_algebra_1"
proof -
have "(∑n<1. f n * 0 ^ n) = (∑n. f n * 0 ^ n)"
by (subst suminf_finite[where N="{0}"]) (auto simp: power_0_left)
then show ?thesis by simp
qed
lemma powser_sums_zero: "(λn. a n * 0^n) sums a 0"
for a :: "nat ⇒ 'a::real_normed_div_algebra"
using sums_finite [of "{0}" "λn. a n * 0 ^ n"]
by simp
lemma powser_sums_zero_iff [simp]: "(λn. a n * 0^n) sums x ⟷ a 0 = x"
for a :: "nat ⇒ 'a::real_normed_div_algebra"
using powser_sums_zero sums_unique2 by blast
text ‹
Power series has a circle or radius of convergence: if it sums for ‹x›,
then it sums absolutely for ‹z› with \<^term>‹¦z¦ < ¦x¦›.›
lemma powser_insidea:
fixes x z :: "'a::real_normed_div_algebra"
assumes 1: "summable (λn. f n * x^n)"
and 2: "norm z < norm x"
shows "summable (λn. norm (f n * z ^ n))"
proof -
from 2 have x_neq_0: "x ≠ 0" by clarsimp
from 1 have "(λn. f n * x^n) ⇢ 0"
by (rule summable_LIMSEQ_zero)
then have "convergent (λn. f n * x^n)"
by (rule convergentI)
then have "Cauchy (λn. f n * x^n)"
by (rule convergent_Cauchy)
then have "Bseq (λn. f n * x^n)"
by (rule Cauchy_Bseq)
then obtain K where 3: "0 < K" and 4: "∀n. norm (f n * x^n) ≤ K"
by (auto simp: Bseq_def)
have "∃N. ∀n≥N. norm (norm (f n * z ^ n)) ≤ K * norm (z ^ n) * inverse (norm (x^n))"
proof (intro exI allI impI)
fix n :: nat
assume "0 ≤ n"
have "norm (norm (f n * z ^ n)) * norm (x^n) =
norm (f n * x^n) * norm (z ^ n)"
by (simp add: norm_mult abs_mult)
also have "… ≤ K * norm (z ^ n)"
by (simp only: mult_right_mono 4 norm_ge_zero)
also have "… = K * norm (z ^ n) * (inverse (norm (x^n)) * norm (x^n))"
by (simp add: x_neq_0)
also have "… = K * norm (z ^ n) * inverse (norm (x^n)) * norm (x^n)"
by (simp only: mult.assoc)
finally show "norm (norm (f n * z ^ n)) ≤ K * norm (z ^ n) * inverse (norm (x^n))"
by (simp add: mult_le_cancel_right x_neq_0)
qed
moreover have "summable (λn. K * norm (z ^ n) * inverse (norm (x^n)))"
proof -
from 2 have "norm (norm (z * inverse x)) < 1"
using x_neq_0
by (simp add: norm_mult nonzero_norm_inverse divide_inverse [where 'a=real, symmetric])
then have "summable (λn. norm (z * inverse x) ^ n)"
by (rule summable_geometric)
then have "summable (λn. K * norm (z * inverse x) ^ n)"
by (rule summable_mult)
then show "summable (λn. K * norm (z ^ n) * inverse (norm (x^n)))"
using x_neq_0
by (simp add: norm_mult nonzero_norm_inverse power_mult_distrib
power_inverse norm_power mult.assoc)
qed
ultimately show "summable (λn. norm (f n * z ^ n))"
by (rule summable_comparison_test)
qed
lemma powser_inside:
fixes f :: "nat ⇒ 'a::{real_normed_div_algebra,banach}"
shows
"summable (λn. f n * (x^n)) ⟹ norm z < norm x ⟹
summable (λn. f n * (z ^ n))"
by (rule powser_insidea [THEN summable_norm_cancel])
lemma powser_times_n_limit_0:
fixes x :: "'a::{real_normed_div_algebra,banach}"
assumes "norm x < 1"
shows "(λn. of_nat n * x ^ n) ⇢ 0"
proof -
have "norm x / (1 - norm x) ≥ 0"
using assms by (auto simp: field_split_simps)
moreover obtain N where N: "norm x / (1 - norm x) < of_int N"
using ex_le_of_int by (meson ex_less_of_int)
ultimately have N0: "N>0"
by auto
then have *: "real_of_int (N + 1) * norm x / real_of_int N < 1"
using N assms by (auto simp: field_simps)
have **: "real_of_int N * (norm x * (real_of_nat (Suc n) * norm (x ^ n))) ≤
real_of_nat n * (norm x * ((1 + N) * norm (x ^ n)))" if "N ≤ int n" for n :: nat
proof -
from that have "real_of_int N * real_of_nat (Suc n) ≤ real_of_nat n * real_of_int (1 + N)"
by (simp add: algebra_simps)
then have "(real_of_int N * real_of_nat (Suc n)) * (norm x * norm (x ^ n)) ≤
(real_of_nat n * (1 + N)) * (norm x * norm (x ^ n))"
using N0 mult_mono by fastforce
then show ?thesis
by (simp add: algebra_simps)
qed
show ?thesis using *
by (rule summable_LIMSEQ_zero [OF summable_ratio_test, where N1="nat N"])
(simp add: N0 norm_mult field_simps ** del: of_nat_Suc of_int_add)
qed
corollary lim_n_over_pown:
fixes x :: "'a::{real_normed_field,banach}"
shows "1 < norm x ⟹ ((λn. of_nat n / x^n) ⤏ 0) sequentially"
using powser_times_n_limit_0 [of "inverse x"]
by (simp add: norm_divide field_split_simps)
lemma sum_split_even_odd:
fixes f :: "nat ⇒ real"
shows "(∑i<2 * n. if even i then f i else g i) = (∑i<n. f (2 * i)) + (∑i<n. g (2 * i + 1))"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "(∑i<2 * Suc n. if even i then f i else g i) =
(∑i<n. f (2 * i)) + (∑i<n. g (2 * i + 1)) + (f (2 * n) + g (2 * n + 1))"
using Suc.hyps unfolding One_nat_def by auto
also have "… = (∑i<Suc n. f (2 * i)) + (∑i<Suc n. g (2 * i + 1))"
by auto
finally show ?case .
qed
lemma sums_if':
fixes g :: "nat ⇒ real"
assumes "g sums x"
shows "(λ n. if even n then 0 else g ((n - 1) div 2)) sums x"
unfolding sums_def
proof (rule LIMSEQ_I)
fix r :: real
assume "0 < r"
from ‹g sums x›[unfolded sums_def, THEN LIMSEQ_D, OF this]
obtain no where no_eq: "⋀n. n ≥ no ⟹ (norm (sum g {..<n} - x) < r)"
by blast
let ?SUM = "λ m. ∑i<m. if even i then 0 else g ((i - 1) div 2)"
have "(norm (?SUM m - x) < r)" if "m ≥ 2 * no" for m
proof -
from that have "m div 2 ≥ no" by auto
have sum_eq: "?SUM (2 * (m div 2)) = sum g {..< m div 2}"
using sum_split_even_odd by auto
then have "(norm (?SUM (2 * (m div 2)) - x) < r)"
using no_eq unfolding sum_eq using ‹m div 2 ≥ no› by auto
moreover
have "?SUM (2 * (m div 2)) = ?SUM m"
proof (cases "even m")
case True
then show ?thesis
by (auto simp: even_two_times_div_two)
next
case False
then have eq: "Suc (2 * (m div 2)) = m" by simp
then have "even (2 * (m div 2))" using ‹odd m› by auto
have "?SUM m = ?SUM (Suc (2 * (m div 2)))" unfolding eq ..
also have "… = ?SUM (2 * (m div 2))" using ‹even (2 * (m div 2))› by auto
finally show ?thesis by auto
qed
ultimately show ?thesis by auto
qed
then show "∃no. ∀ m ≥ no. norm (?SUM m - x) < r"
by blast
qed
lemma sums_if:
fixes g :: "nat ⇒ real"
assumes "g sums x" and "f sums y"
shows "(λ n. if even n then f (n div 2) else g ((n - 1) div 2)) sums (x + y)"
proof -
let ?s = "λ n. if even n then 0 else f ((n - 1) div 2)"
have if_sum: "(if B then (0 :: real) else E) + (if B then T else 0) = (if B then T else E)"
for B T E
by (cases B) auto
have g_sums: "(λ n. if even n then 0 else g ((n - 1) div 2)) sums x"
using sums_if'[OF ‹g sums x›] .
have if_eq: "⋀B T E. (if ¬ B then T else E) = (if B then E else T)"
by auto
have "?s sums y" using sums_if'[OF ‹f sums y›] .
from this[unfolded sums_def, THEN LIMSEQ_Suc]
have "(λn. if even n then f (n div 2) else 0) sums y"
by (simp add: lessThan_Suc_eq_insert_0 sum.atLeast1_atMost_eq image_Suc_lessThan
if_eq sums_def cong del: if_weak_cong)
from sums_add[OF g_sums this] show ?thesis
by (simp only: if_sum)
qed
subsection ‹Alternating series test / Leibniz formula›
lemma sums_alternating_upper_lower:
fixes a :: "nat ⇒ real"
assumes mono: "⋀n. a (Suc n) ≤ a n"
and a_pos: "⋀n. 0 ≤ a n"
and "a ⇢ 0"
shows "∃l. ((∀n. (∑i<2*n. (- 1)^i*a i) ≤ l) ∧ (λ n. ∑i<2*n. (- 1)^i*a i) ⇢ l) ∧
((∀n. l ≤ (∑i<2*n + 1. (- 1)^i*a i)) ∧ (λ n. ∑i<2*n + 1. (- 1)^i*a i) ⇢ l)"
(is "∃l. ((∀n. ?f n ≤ l) ∧ _) ∧ ((∀n. l ≤ ?g n) ∧ _)")
proof (rule nested_sequence_unique)
have fg_diff: "⋀n. ?f n - ?g n = - a (2 * n)" by auto
show "∀n. ?f n ≤ ?f (Suc n)"
proof
show "?f n ≤ ?f (Suc n)" for n
using mono[of "2*n"] by auto
qed
show "∀n. ?g (Suc n) ≤ ?g n"
proof
show "?g (Suc n) ≤ ?g n" for n
using mono[of "Suc (2*n)"] by auto
qed
show "∀n. ?f n ≤ ?g n"
proof
show "?f n ≤ ?g n" for n
using fg_diff a_pos by auto
qed
show "(λn. ?f n - ?g n) ⇢ 0"
unfolding fg_diff
proof (rule LIMSEQ_I)
fix r :: real
assume "0 < r"
with ‹a ⇢ 0›[THEN LIMSEQ_D] obtain N where "⋀ n. n ≥ N ⟹ norm (a n - 0) < r"
by auto
then have "∀n ≥ N. norm (- a (2 * n) - 0) < r"
by auto
then show "∃N. ∀n ≥ N. norm (- a (2 * n) - 0) < r"
by auto
qed
qed
lemma summable_Leibniz':
fixes a :: "nat ⇒ real"
assumes a_zero: "a ⇢ 0"
and a_pos: "⋀n. 0 ≤ a n"
and a_monotone: "⋀n. a (Suc n) ≤ a n"
shows summable: "summable (λ n. (-1)^n * a n)"
and "⋀n. (∑i<2*n. (-1)^i*a i) ≤ (∑i. (-1)^i*a i)"
and "(λn. ∑i<2*n. (-1)^i*a i) ⇢ (∑i. (-1)^i*a i)"
and "⋀n. (∑i. (-1)^i*a i) ≤ (∑i<2*n+1. (-1)^i*a i)"
and "(λn. ∑i<2*n+1. (-1)^i*a i) ⇢ (∑i. (-1)^i*a i)"
proof -
let ?S = "λn. (-1)^n * a n"
let ?P = "λn. ∑i<n. ?S i"
let ?f = "λn. ?P (2 * n)"
let ?g = "λn. ?P (2 * n + 1)"
obtain l :: real
where below_l: "∀ n. ?f n ≤ l"
and "?f ⇢ l"
and above_l: "∀ n. l ≤ ?g n"
and "?g ⇢ l"
using sums_alternating_upper_lower[OF a_monotone a_pos a_zero] by blast
let ?Sa = "λm. ∑n<m. ?S n"
have "?Sa ⇢ l"
proof (rule LIMSEQ_I)
fix r :: real
assume "0 < r"
with ‹?f ⇢ l›[THEN LIMSEQ_D]
obtain f_no where f: "⋀n. n ≥ f_no ⟹ norm (?f n - l) < r"
by auto
from ‹0 < r› ‹?g ⇢ l›[THEN LIMSEQ_D]
obtain g_no where g: "⋀n. n ≥ g_no ⟹ norm (?g n - l) < r"
by auto
have "norm (?Sa n - l) < r" if "n ≥ (max (2 * f_no) (2 * g_no))" for n
proof -
from that have "n ≥ 2 * f_no" and "n ≥ 2 * g_no" by auto
show ?thesis
proof (cases "even n")
case True
then have n_eq: "2 * (n div 2) = n"
by (simp add: even_two_times_div_two)
with ‹n ≥ 2 * f_no› have "n div 2 ≥ f_no"
by auto
from f[OF this] show ?thesis
unfolding n_eq atLeastLessThanSuc_atLeastAtMost .
next
case False
then have "even (n - 1)" by simp
then have n_eq: "2 * ((n - 1) div 2) = n - 1"
by (simp add: even_two_times_div_two)
then have range_eq: "n - 1 + 1 = n"
using odd_pos[OF False] by auto
from n_eq ‹n ≥ 2 * g_no› have "(n - 1) div 2 ≥ g_no"
by auto
from g[OF this] show ?thesis
by (simp only: n_eq range_eq)
qed
qed
then show "∃no. ∀n ≥ no. norm (?Sa n - l) < r" by blast
qed
then have sums_l: "(λi. (-1)^i * a i) sums l"
by (simp only: sums_def)
then show "summable ?S"
by (auto simp: summable_def)
have "l = suminf ?S" by (rule sums_unique[OF sums_l])
fix n
show "suminf ?S ≤ ?g n"
unfolding sums_unique[OF sums_l, symmetric] using above_l by auto
show "?f n ≤ suminf ?S"
unfolding sums_unique[OF sums_l, symmetric] using below_l by auto
show "?g ⇢ suminf ?S"
using ‹?g ⇢ l› ‹l = suminf ?S› by auto
show "?f ⇢ suminf ?S"
using ‹?f ⇢ l› ‹l = suminf ?S› by auto
qed
theorem summable_Leibniz:
fixes a :: "nat ⇒ real"
assumes a_zero: "a ⇢ 0"
and "monoseq a"
shows "summable (λ n. (-1)^n * a n)" (is "?summable")
and "0 < a 0 ⟶
(∀n. (∑i. (- 1)^i*a i) ∈ { ∑i<2*n. (- 1)^i * a i .. ∑i<2*n+1. (- 1)^i * a i})" (is "?pos")
and "a 0 < 0 ⟶
(∀n. (∑i. (- 1)^i*a i) ∈ { ∑i<2*n+1. (- 1)^i * a i .. ∑i<2*n. (- 1)^i * a i})" (is "?neg")
and "(λn. ∑i<2*n. (- 1)^i*a i) ⇢ (∑i. (- 1)^i*a i)" (is "?f")
and "(λn. ∑i<2*n+1. (- 1)^i*a i) ⇢ (∑i. (- 1)^i*a i)" (is "?g")
proof -
have "?summable ∧ ?pos ∧ ?neg ∧ ?f ∧ ?g"
proof (cases "(∀n. 0 ≤ a n) ∧ (∀m. ∀n≥m. a n ≤ a m)")
case True
then have ord: "⋀n m. m ≤ n ⟹ a n ≤ a m"
and ge0: "⋀n. 0 ≤ a n"
by auto
have mono: "a (Suc n) ≤ a n" for n
using ord[where n="Suc n" and m=n] by auto
note leibniz = summable_Leibniz'[OF ‹a ⇢ 0› ge0]
from leibniz[OF mono]
show ?thesis using ‹0 ≤ a 0› by auto
next
let ?a = "λn. - a n"
case False
with monoseq_le[OF ‹monoseq a› ‹a ⇢ 0›]
have "(∀ n. a n ≤ 0) ∧ (∀m. ∀n≥m. a m ≤ a n)" by auto
then have ord: "⋀n m. m ≤ n ⟹ ?a n ≤ ?a m" and ge0: "⋀ n. 0 ≤ ?a n"
by auto
have monotone: "?a (Suc n) ≤ ?a n" for n
using ord[where n="Suc n" and m=n] by auto
note leibniz =
summable_Leibniz'[OF _ ge0, of "λx. x",
OF tendsto_minus[OF ‹a ⇢ 0›, unfolded minus_zero] monotone]
have "summable (λ n. (-1)^n * ?a n)"
using leibniz(1) by auto
then obtain l where "(λ n. (-1)^n * ?a n) sums l"
unfolding summable_def by auto
from this[THEN sums_minus] have "(λ n. (-1)^n * a n) sums -l"
by auto
then have ?summable by (auto simp: summable_def)
moreover
have "¦- a - - b¦ = ¦a - b¦" for a b :: real
unfolding minus_diff_minus by auto
from suminf_minus[OF leibniz(1), unfolded mult_minus_right minus_minus]
have move_minus: "(∑n. - ((- 1) ^ n * a n)) = - (∑n. (- 1) ^ n * a n)"
by auto
have ?pos using ‹0 ≤ ?a 0› by auto
moreover have ?neg
using leibniz(2,4)
unfolding mult_minus_right sum_negf move_minus neg_le_iff_le
by auto
moreover have ?f and ?g
using leibniz(3,5)[unfolded mult_minus_right sum_negf move_minus, THEN tendsto_minus_cancel]
by auto
ultimately show ?thesis by auto
qed
then show ?summable and ?pos and ?neg and ?f and ?g
by safe
qed
subsection ‹Term-by-Term Differentiability of Power Series›
definition diffs :: "(nat ⇒ 'a::ring_1) ⇒ nat ⇒ 'a"
where "diffs c = (λn. of_nat (Suc n) * c (Suc n))"
text ‹Lemma about distributing negation over it.›
lemma diffs_minus: "diffs (λn. - c n) = (λn. - diffs c n)"
by (simp add: diffs_def)
lemma diffs_equiv:
fixes x :: "'a::{real_normed_vector,ring_1}"
shows "summable (λn. diffs c n * x^n) ⟹
(λn. of_nat n * c n * x^(n - Suc 0)) sums (∑n. diffs c n * x^n)"
unfolding diffs_def
by (simp add: summable_sums sums_Suc_imp)
lemma lemma_termdiff1:
fixes z :: "'a :: {monoid_mult,comm_ring}"
shows "(∑p<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) =
(∑p<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p))))"
by (auto simp: algebra_simps power_add [symmetric])
lemma sumr_diff_mult_const2: "sum f {..<n} - of_nat n * r = (∑i<n. f i - r)"
for r :: "'a::ring_1"
by (simp add: sum_subtractf)
lemma lemma_termdiff2:
fixes h :: "'a::field"
assumes h: "h ≠ 0"
shows "((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0) =
h * (∑p< n - Suc 0. ∑q< n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q))"
(is "?lhs = ?rhs")
proof (cases n)
case (Suc m)
have 0: "⋀x k. (∑n<Suc k. h * (z ^ x * (z ^ (k - n) * (h + z) ^ n))) =
(∑j<Suc k. h * ((h + z) ^ j * z ^ (x + k - j)))"
by (auto simp add: power_add [symmetric] mult.commute intro: sum.cong)
have *: "(∑i<m. z ^ i * ((z + h) ^ (m - i) - z ^ (m - i))) =
(∑i<m. ∑j<m - i. h * ((z + h) ^ j * z ^ (m - Suc j)))"
by (force simp add: less_iff_Suc_add sum_distrib_left diff_power_eq_sum ac_simps 0
simp del: sum.lessThan_Suc power_Suc intro: sum.cong)
have "h * ?lhs = (z + h) ^ n - z ^ n - h * of_nat n * z ^ (n - Suc 0)"
by (simp add: right_diff_distrib diff_divide_distrib h mult.assoc [symmetric])
also have "... = h * ((∑p<Suc m. (z + h) ^ p * z ^ (m - p)) - of_nat (Suc m) * z ^ m)"
by (simp add: Suc diff_power_eq_sum h right_diff_distrib [symmetric] mult.assoc
del: power_Suc sum.lessThan_Suc of_nat_Suc)
also have "... = h * ((∑p<Suc m. (z + h) ^ (m - p) * z ^ p) - of_nat (Suc m) * z ^ m)"
by (subst sum.nat_diff_reindex[symmetric]) simp
also have "... = h * (∑i<Suc m. (z + h) ^ (m - i) * z ^ i - z ^ m)"
by (simp add: sum_subtractf)
also have "... = h * ?rhs"
by (simp add: lemma_termdiff1 sum_distrib_left Suc *)
finally have "h * ?lhs = h * ?rhs" .
then show ?thesis
by (simp add: h)
qed auto
lemma real_sum_nat_ivl_bounded2:
fixes K :: "'a::linordered_semidom"
assumes f: "⋀p::nat. p < n ⟹ f p ≤ K" and K: "0 ≤ K"
shows "sum f {..<n-k} ≤ of_nat n * K"
proof -
have "sum f {..<n-k} ≤ (∑i<n - k. K)"
by (rule sum_mono [OF f]) auto
also have "... ≤ of_nat n * K"
by (auto simp: mult_right_mono K)
finally show ?thesis .
qed
lemma lemma_termdiff3:
fixes h z :: "'a::real_normed_field"
assumes 1: "h ≠ 0"
and 2: "norm z ≤ K"
and 3: "norm (z + h) ≤ K"
shows "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) ≤
of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
proof -
have "norm (((z + h) ^ n - z ^ n) / h - of_nat n * z ^ (n - Suc 0)) =
norm (∑p<n - Suc 0. ∑q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) * norm h"
by (metis (lifting, no_types) lemma_termdiff2 [OF 1] mult.commute norm_mult)
also have "… ≤ of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2)) * norm h"
proof (rule mult_right_mono [OF _ norm_ge_zero])
from norm_ge_zero 2 have K: "0 ≤ K"
by (rule order_trans)
have le_Kn: "norm ((z + h) ^ i * z ^ j) ≤ K ^ n" if "i + j = n" for i j n
proof -
have "norm (z + h) ^ i * norm z ^ j ≤ K ^ i * K ^ j"
by (intro mult_mono power_mono 2 3 norm_ge_zero zero_le_power K)
also have "... = K^n"
by (metis power_add that)
finally show ?thesis
by (simp add: norm_mult norm_power)
qed
then have "⋀p q.
⟦p < n; q < n - Suc 0⟧ ⟹ norm ((z + h) ^ q * z ^ (n - 2 - q)) ≤ K ^ (n - 2)"
by (simp del: subst_all)
then
show "norm (∑p<n - Suc 0. ∑q<n - Suc 0 - p. (z + h) ^ q * z ^ (n - 2 - q)) ≤
of_nat n * (of_nat (n - Suc 0) * K ^ (n - 2))"
by (intro order_trans [OF norm_sum]
real_sum_nat_ivl_bounded2 mult_nonneg_nonneg of_nat_0_le_iff zero_le_power K)
qed
also have "… = of_nat n * of_nat (n - Suc 0) * K ^ (n - 2) * norm h"
by (simp only: mult.assoc)
finally show ?thesis .
qed
lemma lemma_termdiff4:
fixes f :: "'a::real_normed_vector ⇒ 'b::real_normed_vector"
and k :: real
assumes k: "0 < k"
and le: "⋀h. h ≠ 0 ⟹ norm h < k ⟹ norm (f h) ≤ K * norm h"
shows "f ─0→ 0"
proof (rule tendsto_norm_zero_cancel)
show "(λh. norm (f h)) ─0→ 0"
proof (rule real_tendsto_sandwich)
show "eventually (λh. 0 ≤ norm (f h)) (at 0)"
by simp
show "eventually (λh. norm (f h) ≤ K * norm h) (at 0)"
using k by (auto simp: eventually_at dist_norm le)
show "(λh. 0) ─(0::'a)→ (0::real)"
by (rule tendsto_const)
have "(λh. K * norm h) ─(0::'a)→ K * norm (0::'a)"
by (intro tendsto_intros)
then show "(λh. K * norm h) ─(0::'a)→ 0"
by simp
qed
qed
lemma lemma_termdiff5:
fixes g :: "'a::real_normed_vector ⇒ nat ⇒ 'b::banach"
and k :: real
assumes k: "0 < k"
and f: "summable f"
and le: "⋀h n. h ≠ 0 ⟹ norm h < k ⟹ norm (g h n) ≤ f n * norm h"
shows "(λh. suminf (g h)) ─0→ 0"
proof (rule lemma_termdiff4 [OF k])
fix h :: 'a
assume "h ≠ 0" and "norm h < k"
then have 1: "∀n. norm (g h n) ≤ f n * norm h"
by (simp add: le)
then have "∃N. ∀n≥N. norm (norm (g h n)) ≤ f n * norm h"
by simp
moreover from f have 2: "summable (λn. f n * norm h)"
by (rule summable_mult2)
ultimately have 3: "summable (λn. norm (g h n))"
by (rule summable_comparison_test)
then have "norm (suminf (g h)) ≤ (∑n. norm (g h n))"
by (rule summable_norm)
also from 1 3 2 have "(∑n. norm (g h n)) ≤ (∑n. f n * norm h)"
by (simp add: suminf_le)
also from f have "(∑n. f n * norm h) = suminf f * norm h"
by (rule suminf_mult2 [symmetric])
finally show "norm (suminf (g h)) ≤ suminf f * norm h" .
qed
lemma termdiffs_aux:
fixes x :: "'a::{real_normed_field,banach}"
assumes 1: "summable (λn. diffs (diffs c) n * K ^ n)"
and 2: "norm x < norm K"
shows "(λh. ∑n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) ─0→ 0"
proof -
from dense [OF 2] obtain r where r1: "norm x < r" and r2: "r < norm K"
by fast
from norm_ge_zero r1 have r: "0 < r"
by (rule order_le_less_trans)
then have r_neq_0: "r ≠ 0" by simp
show ?thesis
proof (rule lemma_termdiff5)
show "0 < r - norm x"
using r1 by simp
from r r2 have "norm (of_real r::'a) < norm K"
by simp
with 1 have "summable (λn. norm (diffs (diffs c) n * (of_real r ^ n)))"
by (rule powser_insidea)
then have "summable (λn. diffs (diffs (λn. norm (c n))) n * r ^ n)"
using r by (simp add: diffs_def norm_mult norm_power del: of_nat_Suc)
then have "summable (λn. of_nat n * diffs (λn. norm (c n)) n * r ^ (n - Suc 0))"
by (rule diffs_equiv [THEN sums_summable])
also have "(λn. of_nat n * diffs (λn. norm (c n)) n * r ^ (n - Suc 0)) =
(λn. diffs (λm. of_nat (m - Suc 0) * norm (c m) * inverse r) n * (r ^ n))"
by (simp add: diffs_def r_neq_0 fun_eq_iff split: nat_diff_split)
finally have "summable
(λn. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0))"
by (rule diffs_equiv [THEN sums_summable])
also have
"(λn. of_nat n * (of_nat (n - Suc 0) * norm (c n) * inverse r) * r ^ (n - Suc 0)) =
(λn. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))"
by (rule ext) (simp add: r_neq_0 split: nat_diff_split)
finally show "summable (λn. norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2))" .
next
fix h :: 'a and n
assume h: "h ≠ 0"
assume "norm h < r - norm x"
then have "norm x + norm h < r" by simp
with norm_triangle_ineq
have xh: "norm (x + h) < r"
by (rule order_le_less_trans)
have "norm (((x + h) ^ n - x ^ n) / h - of_nat n * x ^ (n - Suc 0))
≤ real n * (real (n - Suc 0) * (r ^ (n - 2) * norm h))"
by (metis (mono_tags, lifting) h mult.assoc lemma_termdiff3 less_eq_real_def r1 xh)
then show "norm (c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) ≤
norm (c n) * of_nat n * of_nat (n - Suc 0) * r ^ (n - 2) * norm h"
by (simp only: norm_mult mult.assoc mult_left_mono [OF _ norm_ge_zero])
qed
qed
lemma termdiffs:
fixes K x :: "'a::{real_normed_field,banach}"
assumes 1: "summable (λn. c n * K ^ n)"
and 2: "summable (λn. (diffs c) n * K ^ n)"
and 3: "summable (λn. (diffs (diffs c)) n * K ^ n)"
and 4: "norm x < norm K"
shows "DERIV (λx. ∑n. c n * x^n) x :> (∑n. (diffs c) n * x^n)"
unfolding DERIV_def
proof (rule LIM_zero_cancel)
show "(λh. (suminf (λn. c n * (x + h) ^ n) - suminf (λn. c n * x^n)) / h
- suminf (λn. diffs c n * x^n)) ─0→ 0"
proof (rule LIM_equal2)
show "0 < norm K - norm x"
using 4 by (simp add: less_diff_eq)
next
fix h :: 'a
assume "norm (h - 0) < norm K - norm x"
then have "norm x + norm h < norm K" by simp
then have 5: "norm (x + h) < norm K"
by (rule norm_triangle_ineq [THEN order_le_less_trans])
have "summable (λn. c n * x^n)"
and "summable (λn. c n * (x + h) ^ n)"
and "summable (λn. diffs c n * x^n)"
using 1 2 4 5 by (auto elim: powser_inside)
then have "((∑n. c n * (x + h) ^ n) - (∑n. c n * x^n)) / h - (∑n. diffs c n * x^n) =
(∑n. (c n * (x + h) ^ n - c n * x^n) / h - of_nat n * c n * x ^ (n - Suc 0))"
by (intro sums_unique sums_diff sums_divide diffs_equiv summable_sums)
then show "((∑n. c n * (x + h) ^ n) - (∑n. c n * x^n)) / h - (∑n. diffs c n * x^n) =
(∑n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0)))"
by (simp add: algebra_simps)
next
show "(λh. ∑n. c n * (((x + h) ^ n - x^n) / h - of_nat n * x ^ (n - Suc 0))) ─0→ 0"
by (rule termdiffs_aux [OF 3 4])
qed
qed
subsection ‹The Derivative of a Power Series Has the Same Radius of Convergence›
lemma termdiff_converges:
fixes x :: "'a::{real_normed_field,banach}"
assumes K: "norm x < K"
and sm: "⋀x. norm x < K ⟹ summable(λn. c n * x ^ n)"
shows "summable (λn. diffs c n * x ^ n)"
proof (cases "x = 0")
case True
then show ?thesis
using powser_sums_zero sums_summable by auto
next
case False
then have "K > 0"
using K less_trans zero_less_norm_iff by blast
then obtain r :: real where r: "norm x < norm r" "norm r < K" "r > 0"
using K False
by (auto simp: field_simps abs_less_iff add_pos_pos intro: that [of "(norm x + K) / 2"])
have to0: "(λn. of_nat n * (x / of_real r) ^ n) ⇢ 0"
using r by (simp add: norm_divide powser_times_n_limit_0 [of "x / of_real r"])
obtain N where N: "⋀n. n≥N ⟹ real_of_nat n * norm x ^ n < r ^ n"
using r LIMSEQ_D [OF to0, of 1]
by (auto simp: norm_divide norm_mult norm_power field_simps)
have "summable (λn. (of_nat n * c n) * x ^ n)"
proof (rule summable_comparison_test')
show "summable (λn. norm (c n * of_real r ^ n))"
apply (rule powser_insidea [OF sm [of "of_real ((r+K)/2)"]])
using N r norm_of_real [of "r + K", where 'a = 'a] by auto
show "⋀n. N ≤ n ⟹ norm (of_nat n * c n * x ^ n) ≤ norm (c n * of_real r ^ n)"
using N r by (fastforce simp add: norm_mult norm_power less_eq_real_def)
qed
then have "summable (λn. (of_nat (Suc n) * c(Suc n)) * x ^ Suc n)"
using summable_iff_shift [of "λn. of_nat n * c n * x ^ n" 1]
by simp
then have "summable (λn. (of_nat (Suc n) * c(Suc n)) * x ^ n)"
using False summable_mult2 [of "λn. (of_nat (Suc n) * c(Suc n) * x ^ n) * x" "inverse x"]
by (simp add: mult.assoc) (auto simp: ac_simps)
then show ?thesis
by (simp add: diffs_def)
qed
lemma termdiff_converges_all:
fixes x :: "'a::{real_normed_field,banach}"
assumes "⋀x. summable (λn. c n * x^n)"
shows "summable (λn. diffs c n * x^n)"
by (rule termdiff_converges [where K = "1 + norm x"]) (use assms in auto)
lemma termdiffs_strong:
fixes K x :: "'a::{real_normed_field,banach}"
assumes sm: "summable (λn. c n * K ^ n)"
and K: "norm x < norm K"
shows "DERIV (λx. ∑n. c n * x^n) x :> (∑n. diffs c n * x^n)"
proof -
have "norm K + norm x < norm K + norm K"
using K by force
then have K2: "norm ((of_real (norm K) + of_real (norm x)) / 2 :: 'a) < norm K"
by (auto simp: norm_triangle_lt norm_divide field_simps)
then have [simp]: "norm ((of_real (norm K) + of_real (norm x)) :: 'a) < norm K * 2"
by simp
have "summable (λn. c n * (of_real (norm x + norm K) / 2) ^ n)"
by (metis K2 summable_norm_cancel [OF powser_insidea [OF sm]] add.commute of_real_add)
moreover have "⋀x. norm x < norm K ⟹ summable (λn. diffs c n * x ^ n)"
by (blast intro: sm termdiff_converges powser_inside)
moreover have "⋀x. norm x < norm K ⟹ summable (λn. diffs(diffs c) n * x ^ n)"
by (blast intro: sm termdiff_converges powser_inside)
ultimately show ?thesis
by (rule termdiffs [where K = "of_real (norm x + norm K) / 2"])
(use K in ‹auto simp: field_simps simp flip: of_real_add›)
qed
lemma termdiffs_strong_converges_everywhere:
fixes K x :: "'a::{real_normed_field,banach}"
assumes "⋀y. summable (λn. c n * y ^ n)"
shows "((λx. ∑n. c n * x^n) has_field_derivative (∑n. diffs c n * x^n)) (at x)"
using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
by (force simp del: of_real_add)
lemma termdiffs_strong':
fixes z :: "'a :: {real_normed_field,banach}"
assumes "⋀z. norm z < K ⟹ summable (λn. c n * z ^ n)"
assumes "norm z < K"
shows "((λz. ∑n. c n * z^n) has_field_derivative (∑n. diffs c n * z^n)) (at z)"
proof (rule termdiffs_strong)
define L :: real where "L = (norm z + K) / 2"
have "0 ≤ norm z" by simp
also note ‹norm z < K›
finally have K: "K ≥ 0" by simp
from assms K have L: "L ≥ 0" "norm z < L" "L < K" by (simp_all add: L_def)
from L show "norm z < norm (of_real L :: 'a)" by simp
from L show "summable (λn. c n * of_real L ^ n)" by (intro assms(1)) simp_all
qed
lemma termdiffs_sums_strong:
fixes z :: "'a :: {banach,real_normed_field}"
assumes sums: "⋀z. norm z < K ⟹ (λn. c n * z ^ n) sums f z"
assumes deriv: "(f has_field_derivative f') (at z)"
assumes norm: "norm z < K"
shows "(λn. diffs c n * z ^ n) sums f'"
proof -
have summable: "summable (λn. diffs c n * z^n)"
by (intro termdiff_converges[OF norm] sums_summable[OF sums])
from norm have "eventually (λz. z ∈ norm -` {..<K}) (nhds z)"
by (intro eventually_nhds_in_open open_vimage)
(simp_all add: continuous_on_norm)
hence eq: "eventually (λz. (∑n. c n * z^n) = f z) (nhds z)"
by eventually_elim (insert sums, simp add: sums_iff)
have "((λz. ∑n. c n * z^n) has_field_derivative (∑n. diffs c n * z^n)) (at z)"
by (intro termdiffs_strong'[OF _ norm] sums_summable[OF sums])
hence "(f has_field_derivative (∑n. diffs c n * z^n)) (at z)"
by (subst (asm) DERIV_cong_ev[OF refl eq refl])
from this and deriv have "(∑n. diffs c n * z^n) = f'" by (rule DERIV_unique)
with summable show ?thesis by (simp add: sums_iff)
qed
lemma isCont_powser:
fixes K x :: "'a::{real_normed_field,banach}"
assumes "summable (λn. c n * K ^ n)"
assumes "norm x < norm K"
shows "isCont (λx. ∑n. c n * x^n) x"
using termdiffs_strong[OF assms] by (blast intro!: DERIV_isCont)
lemmas isCont_powser' = isCont_o2[OF _ isCont_powser]
lemma isCont_powser_converges_everywhere:
fixes K x :: "'a::{real_normed_field,banach}"
assumes "⋀y. summable (λn. c n * y ^ n)"
shows "isCont (λx. ∑n. c n * x^n) x"
using termdiffs_strong[OF assms[of "of_real (norm x + 1)"], of x]
by (force intro!: DERIV_isCont simp del: of_real_add)
lemma powser_limit_0:
fixes a :: "nat ⇒ 'a::{real_normed_field,banach}"
assumes s: "0 < s"
and sm: "⋀x. norm x < s ⟹ (λn. a n * x ^ n) sums (f x)"
shows "(f ⤏ a 0) (at 0)"
proof -
have "norm (of_real s / 2 :: 'a) < s"
using s by (auto simp: norm_divide)
then have "summable (λn. a n * (of_real s / 2) ^ n)"
by (rule sums_summable [OF sm])
then have "((λx. ∑n. a n * x ^ n) has_field_derivative (∑n. diffs a n * 0 ^ n)) (at 0)"
by (rule termdiffs_strong) (use s in ‹auto simp: norm_divide›)
then have "isCont (λx. ∑n. a n * x ^ n) 0"
by (blast intro: DERIV_continuous)
then have "((λx. ∑n. a n * x ^ n) ⤏ a 0) (at 0)"
by (simp add: continuous_within)
moreover have "(λx. f x - (∑n. a n * x ^ n)) ─0→ 0"
apply (clarsimp simp: LIM_eq)
apply (rule_tac x=s in exI)
using s sm sums_unique by fastforce
ultimately show ?thesis
by (rule Lim_transform)
qed
lemma powser_limit_0_strong:
fixes a :: "nat ⇒ 'a::{real_normed_field,banach}"
assumes s: "0 < s"
and sm: "⋀x. x ≠ 0 ⟹ norm x < s ⟹ (λn. a n * x ^ n) sums (f x)"
shows "(f ⤏ a 0) (at 0)"
proof -
have *: "((λx. if x = 0 then a 0 else f x) ⤏ a 0) (at 0)"
by (rule powser_limit_0 [OF s]) (auto simp: powser_sums_zero sm)
show ?thesis
using "*" by (auto cong: Lim_cong_within)
qed
subsection ‹Derivability of power series›
lemma DERIV_series':
fixes f :: "real ⇒ nat ⇒ real"
assumes DERIV_f: "⋀ n. DERIV (λ x. f x n) x0 :> (f' x0 n)"
and allf_summable: "⋀ x. x ∈ {a <..< b} ⟹ summable (f x)"
and x0_in_I: "x0 ∈ {a <..< b}"
and "summable (f' x0)"
and "summable L"
and L_def: "⋀n x y. x ∈ {a <..< b} ⟹ y ∈ {a <..< b} ⟹ ¦f x n - f y n¦ ≤ L n * ¦x - y¦"
shows "DERIV (λ x. suminf (f x)) x0 :> (suminf (f' x0))"
unfolding DERIV_def
proof (rule LIM_I)
fix r :: real
assume "0 < r" then have "0 < r/3" by auto
obtain N_L where N_L: "⋀ n. N_L ≤ n ⟹ ¦ ∑ i. L (i + n) ¦ < r/3"
using suminf_exist_split[OF ‹0 < r/3› ‹summable L›] by auto
obtain N_f' where N_f': "⋀ n. N_f' ≤ n ⟹ ¦ ∑ i. f' x0 (i + n) ¦ < r/3"
using suminf_exist_split[OF ‹0 < r/3› ‹summable (f' x0)›] by auto
let ?N = "Suc (max N_L N_f')"
have "¦ ∑ i. f' x0 (i + ?N) ¦ < r/3" (is "?f'_part < r/3")
and L_estimate: "¦ ∑ i. L (i + ?N) ¦ < r/3"
using N_L[of "?N"] and N_f' [of "?N"] by auto
let ?diff = "λi x. (f (x0 + x) i - f x0 i) / x"
let ?r = "r / (3 * real ?N)"
from ‹0 < r› have "0 < ?r" by simp
let ?s = "λn. SOME s. 0 < s ∧ (∀ x. x ≠ 0 ∧ ¦ x ¦ < s ⟶ ¦ ?diff n x - f' x0 n ¦ < ?r)"
define S' where "S' = Min (?s ` {..< ?N })"
have "0 < S'"
unfolding S'_def
proof (rule iffD2[OF Min_gr_iff])
show "∀x ∈ (?s ` {..< ?N }). 0 < x"
proof
fix x
assume "x ∈ ?s ` {..<?N}"
then obtain n where "x = ?s n" and "n ∈ {..<?N}"
using image_iff[THEN iffD1] by blast
from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF ‹0 < ?r›, unfolded real_norm_def]
obtain s where s_bound: "0 < s ∧ (∀x. x ≠ 0 ∧ ¦x¦ < s ⟶ ¦?diff n x - f' x0 n¦ < ?r)"
by auto
have "0 < ?s n"
by (rule someI2[where a=s]) (auto simp: s_bound simp del: of_nat_Suc)
then show "0 < x" by (simp only: ‹x = ?s n›)
qed
qed auto
define S where "S = min (min (x0 - a) (b - x0)) S'"
then have "0 < S" and S_a: "S ≤ x0 - a" and S_b: "S ≤ b - x0"
and "S ≤ S'" using x0_in_I and ‹0 < S'›
by auto
have "¦(suminf (f (x0 + x)) - suminf (f x0)) / x - suminf (f' x0)¦ < r"
if "x ≠ 0" and "¦x¦ < S" for x
proof -
from that have x_in_I: "x0 + x ∈ {a <..< b}"
using S_a S_b by auto
note diff_smbl = summable_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
note div_smbl = summable_divide[OF diff_smbl]
note all_smbl = summable_diff[OF div_smbl ‹summable (f' x0)›]
note ign = summable_ignore_initial_segment[where k="?N"]
note diff_shft_smbl = summable_diff[OF ign[OF allf_summable[OF x_in_I]] ign[OF allf_summable[OF x0_in_I]]]
note div_shft_smbl = summable_divide[OF diff_shft_smbl]
note all_shft_smbl = summable_diff[OF div_smbl ign[OF ‹summable (f' x0)›]]
have 1: "¦(¦?diff (n + ?N) x¦)¦ ≤ L (n + ?N)" for n
proof -
have "¦?diff (n + ?N) x¦ ≤ L (n + ?N) * ¦(x0 + x) - x0¦ / ¦x¦"
using divide_right_mono[OF L_def[OF x_in_I x0_in_I] abs_ge_zero]
by (simp only: abs_divide)
with ‹x ≠ 0› show ?thesis by auto
qed
note 2 = summable_rabs_comparison_test[OF _ ign[OF ‹summable L›]]
from 1 have "¦ ∑ i. ?diff (i + ?N) x ¦ ≤ (∑ i. L (i + ?N))"
by (metis (lifting) abs_idempotent
order_trans[OF summable_rabs[OF 2] suminf_le[OF _ 2 ign[OF ‹summable L›]]])
then have "¦∑i. ?diff (i + ?N) x¦ ≤ r / 3" (is "?L_part ≤ r/3")
using L_estimate by auto
have "¦∑n<?N. ?diff n x - f' x0 n¦ ≤ (∑n<?N. ¦?diff n x - f' x0 n¦)" ..
also have "… < (∑n<?N. ?r)"
proof (rule sum_strict_mono)
fix n
assume "n ∈ {..< ?N}"
have "¦x¦ < S" using ‹¦x¦ < S› .
also have "S ≤ S'" using ‹S ≤ S'› .
also have "S' ≤ ?s n"
unfolding S'_def
proof (rule Min_le_iff[THEN iffD2])
have "?s n ∈ (?s ` {..<?N}) ∧ ?s n ≤ ?s n"
using ‹n ∈ {..< ?N}› by auto
then show "∃ a ∈ (?s ` {..<?N}). a ≤ ?s n"
by blast
qed auto
finally have "¦x¦ < ?s n" .
from DERIV_D[OF DERIV_f[where n=n], THEN LIM_D, OF ‹0 < ?r›,
unfolded real_norm_def diff_0_right, unfolded some_eq_ex[symmetric], THEN conjunct2]
have "∀x. x ≠ 0 ∧ ¦x¦ < ?s n ⟶ ¦?diff n x - f' x0 n¦ < ?r" .
with ‹x ≠ 0› and ‹¦x¦ < ?s n› show "¦?diff n x - f' x0 n¦ < ?r"
by blast
qed auto
also have "… = of_nat (card {..<?N}) * ?r"
by (rule sum_constant)
also have "… = real ?N * ?r"
by simp
also have "… = r/3"
by (auto simp del: of_nat_Suc)
finally have "¦∑n<?N. ?diff n x - f' x0 n ¦ < r / 3" (is "?diff_part < r / 3") .
from suminf_diff[OF allf_summable[OF x_in_I] allf_summable[OF x0_in_I]]
have "¦(suminf (f (x0 + x)) - (suminf (f x0))) / x - suminf (f' x0)¦ =
¦∑n. ?diff n x - f' x0 n¦"
unfolding suminf_diff[OF div_smbl ‹summable (f' x0)›, symmetric]
using suminf_divide[OF diff_smbl, symmetric] by auto
also have "… ≤ ?diff_part + ¦(∑n. ?diff (n + ?N) x) - (∑ n. f' x0 (n + ?N))¦"
unfolding suminf_split_initial_segment[OF all_smbl, where k="?N"]
unfolding suminf_diff[OF div_shft_smbl ign[OF ‹summable (f' x0)›]]
apply (simp only: add.commute)
using abs_triangle_ineq by blast
also have "… ≤ ?diff_part + ?L_part + ?f'_part"
using abs_triangle_ineq4 by auto
also have "… < r /3 + r/3 + r/3"
using ‹?diff_part < r/3› ‹?L_part ≤ r/3› and ‹?f'_part < r/3›
by (rule add_strict_mono [OF add_less_le_mono])
finally show ?thesis
by auto
qed
then show "∃s > 0. ∀ x. x ≠ 0 ∧ norm (x - 0) < s ⟶
norm (((∑n. f (x0 + x) n) - (∑n. f x0 n)) / x - (∑n. f' x0 n)) < r"
using ‹0 < S› by auto
qed
lemma DERIV_power_series':
fixes f :: "nat ⇒ real"
assumes converges: "⋀x. x ∈ {-R <..< R} ⟹ summable (λn. f n * real (Suc n) * x^n)"
and x0_in_I: "x0 ∈ {-R <..< R}"
and "0 < R"
shows "DERIV (λx. (∑n. f n * x^(Suc n))) x0 :> (∑n. f n * real (Suc n) * x0^n)"
(is "DERIV (λx. suminf (?f x)) x0 :> suminf (?f' x0)")
proof -
have for_subinterval: "DERIV (λx. suminf (?f x)) x0 :> suminf (?f' x0)"
if "0 < R'" and "R' < R" and "-R' < x0" and "x0 < R'" for R'
proof -
from that have "x0 ∈ {-R' <..< R'}" and "R' ∈ {-R <..< R}" and "x0 ∈ {-R <..< R}"
by auto
show ?thesis
proof (rule DERIV_series')
show "summable (λ n. ¦f n * real (Suc n) * R'^n¦)"
proof -
have "(R' + R) / 2 < R" and "0 < (R' + R) / 2"
using ‹0 < R'› ‹0 < R› ‹R' < R› by (auto simp: field_simps)
then have in_Rball: "(R' + R) / 2 ∈ {-R <..< R}"
using ‹R' < R› by auto
have "norm R' < norm ((R' + R) / 2)"
using ‹0 < R'› ‹0 < R› ‹R' < R› by (auto simp: field_simps)
from powser_insidea[OF converges[OF in_Rball] this] show ?thesis
by auto
qed
next
fix n x y
assume "x ∈ {-R' <..< R'}" and "y ∈ {-R' <..< R'}"
show "¦?f x n - ?f y n¦ ≤ ¦f n * real (Suc n) * R'^n¦ * ¦x-y¦"
proof -
have "¦f n * x ^ (Suc n) - f n * y ^ (Suc n)¦ =
(¦f n¦ * ¦x-y¦) * ¦∑p<Suc n. x ^ p * y ^ (n - p)¦"
unfolding right_diff_distrib[symmetric] diff_power_eq_sum abs_mult
by auto
also have "… ≤ (¦f n¦ * ¦x-y¦) * (¦real (Suc n)¦ * ¦R' ^ n¦)"
proof (rule mult_left_mono)
have "¦∑p<Suc n. x ^ p * y ^ (n - p)¦ ≤ (∑p<Suc n. ¦x ^ p * y ^ (n - p)¦)"
by (rule sum_abs)
also have "… ≤ (∑p<Suc n. R' ^ n)"
proof (rule sum_mono)
fix p
assume "p ∈ {..<Suc n}"
then have "p ≤ n" by auto
have "¦x^n¦ ≤ R'^n" if "x ∈ {-R'<..<R'}" for n and x :: real
proof -
from that have "¦x¦ ≤ R'" by auto
then show ?thesis
unfolding power_abs by (rule power_mono) auto
qed
from mult_mono[OF this[OF ‹x ∈ {-R'<..<R'}›, of p] this[OF ‹y ∈ {-R'<..<R'}›, of "n-p"]]
and ‹0 < R'›
have "¦x^p * y^(n - p)¦ ≤ R'^p * R'^(n - p)"
unfolding abs_mult by auto
then show "¦x^p * y^(n - p)¦ ≤ R'^n"
unfolding power_add[symmetric] using ‹p ≤ n› by auto
qed
also have "… = real (Suc n) * R' ^ n"
unfolding sum_constant card_atLeastLessThan by auto
finally show "¦∑p<Suc n. x ^ p * y ^ (n - p)¦ ≤ ¦real (Suc n)¦ * ¦R' ^ n¦"
unfolding abs_of_nonneg[OF zero_le_power[OF less_imp_le[OF ‹0 < R'›]]]
by linarith
show "0 ≤ ¦f n¦ * ¦x - y¦"
unfolding abs_mult[symmetric] by auto
qed
also have "… = ¦f n * real (Suc n) * R' ^ n¦ * ¦x - y¦"
unfolding abs_mult mult.assoc[symmetric] by algebra
finally show ?thesis .
qed
next
show "DERIV (λx. ?f x n) x0 :> ?f' x0 n" for n
by (auto intro!: derivative_eq_intros simp del: power_Suc)
next
fix x
assume "x ∈ {-R' <..< R'}"
then have "R' ∈ {-R <..< R}" and "norm x < norm R'"
using assms ‹R' < R› by auto
have "summable (λn. f n * x^n)"
proof (rule summable_comparison_test, intro exI allI impI)
fix n
have le: "¦f n¦ * 1 ≤ ¦f n¦ * real (Suc n)"
by (rule mult_left_mono) auto
show "norm (f n * x^n) ≤ norm (f n * real (Suc n) * x^n)"
unfolding real_norm_def abs_mult
using le mult_right_mono by fastforce
qed (rule powser_insidea[OF converges[OF ‹R' ∈ {-R <..< R}›] ‹norm x < norm R'›])
from this[THEN summable_mult2[where c=x], simplified mult.assoc, simplified mult.commute]
show "summable (?f x)" by auto
next
show "summable (?f' x0)"
using converges[OF ‹x0 ∈ {-R <..< R}›] .
show "x0 ∈ {-R' <..< R'}"
using ‹x0 ∈ {-R' <..< R'}› .
qed
qed
let ?R = "(R + ¦x0¦) / 2"
have "¦x0¦ < ?R"
using assms by (auto simp: field_simps)
then have "- ?R < x0"
proof (cases "x0 < 0")
case True
then have "- x0 < ?R"
using ‹¦x0¦ < ?R› by auto
then show ?thesis
unfolding neg_less_iff_less[symmetric, of "- x0"] by auto
next
case False
have "- ?R < 0" using assms by auto
also have "… ≤ x0" using False by auto
finally show ?thesis .
qed
then have "0 < ?R" "?R < R" "- ?R < x0" and "x0 < ?R"
using assms by (auto simp: field_simps)
from for_subinterval[OF this] show ?thesis .
qed
lemma geometric_deriv_sums:
fixes z :: "'a :: {real_normed_field,banach}"
assumes "norm z < 1"
shows "(λn. of_nat (Suc n) * z ^ n) sums (1 / (1 - z)^2)"
proof -
have "(λn. diffs (λn. 1) n * z^n) sums (1 / (1 - z)^2)"
proof (rule termdiffs_sums_strong)
fix z :: 'a assume "norm z < 1"
thus "(λn. 1 * z^n) sums (1 / (1 - z))" by (simp add: geometric_sums)
qed (insert assms, auto intro!: derivative_eq_intros simp: power2_eq_square)
thus ?thesis unfolding diffs_def by simp
qed
lemma isCont_pochhammer [continuous_intros]: "isCont (λz. pochhammer z n) z"
for z :: "'a::real_normed_field"
by (induct n) (auto simp: pochhammer_rec')
lemma continuous_on_pochhammer [continuous_intros]: "continuous_on A (λz. pochhammer z n)"
for A :: "'a::real_normed_field set"
by (intro continuous_at_imp_continuous_on ballI isCont_pochhammer)
lemmas continuous_on_pochhammer' [continuous_intros] =
continuous_on_compose2[OF continuous_on_pochhammer _ subset_UNIV]
subsection ‹Exponential Function›
definition exp :: "'a ⇒ 'a::{real_normed_algebra_1,banach}"
where "exp = (λx. ∑n. x^n /⇩R fact n)"
lemma summable_exp_generic:
fixes x :: "'a::{real_normed_algebra_1,banach}"
defines S_def: "S ≡ λn. x^n /⇩R fact n"
shows "summable S"
proof -
have S_Suc: "⋀n. S (Suc n) = (x * S n) /⇩R (Suc n)"
unfolding S_def by (simp del: mult_Suc)
obtain r :: real where r0: "0 < r" and r1: "r < 1"
using dense [OF zero_less_one] by fast
obtain N :: nat where N: "norm x < real N * r"
using ex_less_of_nat_mult r0 by auto
from r1 show ?thesis
proof (rule summable_ratio_test [rule_format])
fix n :: nat
assume n: "N ≤ n"
have "norm x ≤ real N * r"
using N by (rule order_less_imp_le)
also have "real N * r ≤ real (Suc n) * r"
using r0 n by (simp add: mult_right_mono)
finally have "norm x * norm (S n) ≤ real (Suc n) * r * norm (S n)"
using norm_ge_zero by (rule mult_right_mono)
then have "norm (x * S n) ≤ real (Suc n) * r * norm (S n)"
by (rule order_trans [OF norm_mult_ineq])
then have "norm (x * S n) / real (Suc n) ≤ r * norm (S n)"
by (simp add: pos_divide_le_eq ac_simps)
then show "norm (S (Suc n)) ≤ r * norm (S n)"
by (simp add: S_Suc inverse_eq_divide)
qed
qed
lemma summable_norm_exp: "summable (λn. norm (x^n /⇩R fact n))"
for x :: "'a::{real_normed_algebra_1,banach}"
proof (rule summable_norm_comparison_test [OF exI, rule_format])
show "summable (λn. norm x^n /⇩R fact n)"
by (rule summable_exp_generic)
show "norm (x^n /⇩R fact n) ≤ norm x^n /⇩R fact n" for n
by (simp add: norm_power_ineq)
qed
lemma summable_exp: "summable (λn. inverse (fact n) * x^n)"
for x :: "'a::{real_normed_field,banach}"
using summable_exp_generic [where x=x]
by (simp add: scaleR_conv_of_real nonzero_of_real_inverse)
lemma exp_converges: "(λn. x^n /⇩R fact n) sums exp x"
unfolding exp_def by (rule summable_exp_generic [THEN summable_sums])
lemma exp_fdiffs:
"diffs (λn. inverse (fact n)) = (λn. inverse (fact n :: 'a::{real_normed_field,banach}))"
by (simp add: diffs_def mult_ac nonzero_inverse_mult_distrib nonzero_of_real_inverse
del: mult_Suc of_nat_Suc)
lemma diffs_of_real: "diffs (λn. of_real (f n)) = (λn. of_real (diffs f n))"
by (simp add: diffs_def)
lemma DERIV_exp [simp]: "DERIV exp x :> exp x"
unfolding exp_def scaleR_conv_of_real
proof (rule DERIV_cong)
have sinv: "summable (λn. of_real (inverse (fact n)) * x ^ n)" for x::'a
by (rule exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real])
note xx = exp_converges [THEN sums_summable, unfolded scaleR_conv_of_real]
show "((λx. ∑n. of_real (inverse (fact n)) * x ^ n) has_field_derivative
(∑n. diffs (λn. of_real (inverse (fact n))) n * x ^ n)) (at x)"
by (rule termdiffs [where K="of_real (1 + norm x)"]) (simp_all only: diffs_of_real exp_fdiffs sinv norm_of_real)
show "(∑n. diffs (λn. of_real (inverse (fact n))) n * x ^ n) = (∑n. of_real (inverse (fact n)) * x ^ n)"
by (simp add: diffs_of_real exp_fdiffs)
qed
declare DERIV_exp[THEN DERIV_chain2, derivative_intros]
and DERIV_exp[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemmas has_derivative_exp[derivative_intros] = DERIV_exp[THEN DERIV_compose_FDERIV]
lemma norm_exp: "norm (exp x) ≤ exp (norm x)"
proof -
from summable_norm[OF summable_norm_exp, of x]
have "norm (exp x) ≤ (∑n. inverse (fact n) * norm (x^n))"
by (simp add: exp_def)
also have "… ≤ exp (norm x)"
using summable_exp_generic[of "norm x"] summable_norm_exp[of x]
by (auto simp: exp_def intro!: suminf_le norm_power_ineq)
finally show ?thesis .
qed
lemma isCont_exp: "isCont exp x"
for x :: "'a::{real_normed_field,banach}"
by (rule DERIV_exp [THEN DERIV_isCont])
lemma isCont_exp' [simp]: "isCont f a ⟹ isCont (λx. exp (f x)) a"
for f :: "_ ⇒'a::{real_normed_field,banach}"
by (rule isCont_o2 [OF _ isCont_exp])
lemma tendsto_exp [tendsto_intros]: "(f ⤏ a) F ⟹ ((λx. exp (f x)) ⤏ exp a) F"
for f:: "_ ⇒'a::{real_normed_field,banach}"
by (rule isCont_tendsto_compose [OF isCont_exp])
lemma continuous_exp [continuous_intros]: "continuous F f ⟹ continuous F (λx. exp (f x))"
for f :: "_ ⇒'a::{real_normed_field,banach}"
unfolding continuous_def by (rule tendsto_exp)
lemma continuous_on_exp [continuous_intros]: "continuous_on s f ⟹ continuous_on s (λx. exp (f x))"
for f :: "_ ⇒'a::{real_normed_field,banach}"
unfolding continuous_on_def by (auto intro: tendsto_exp)
subsubsection ‹Properties of the Exponential Function›
lemma exp_zero [simp]: "exp 0 = 1"
unfolding exp_def by (simp add: scaleR_conv_of_real)
lemma exp_series_add_commuting:
fixes x y :: "'a::{real_normed_algebra_1,banach}"
defines S_def: "S ≡ λx n. x^n /⇩R fact n"
assumes comm: "x * y = y * x"
shows "S (x + y) n = (∑i≤n. S x i * S y (n - i))"
proof (induct n)
case 0
show ?case
unfolding S_def by simp
next
case (Suc n)
have S_Suc: "⋀x n. S x (Suc n) = (x * S x n) /⇩R real (Suc n)"
unfolding S_def by (simp del: mult_Suc)
then have times_S: "⋀x n. x * S x n = real (Suc n) *⇩R S x (Suc n)"
by simp
have S_comm: "⋀n. S x n * y = y * S x n"
by (simp add: power_commuting_commutes comm S_def)
have "real (Suc n) *⇩R S (x + y) (Suc n) = (x + y) * (∑i≤n. S x i * S y (n - i))"
by (metis Suc.hyps times_S)
also have "… = x * (∑i≤n. S x i * S y (n - i)) + y * (∑i≤n. S x i * S y (n - i))"
by (rule distrib_right)
also have "… = (∑i≤n. x * S x i * S y (n - i)) + (∑i≤n. S x i * y * S y (n - i))"
by (simp add: sum_distrib_left ac_simps S_comm)
also have "… = (∑i≤n. x * S x i * S y (n - i)) + (∑i≤n. S x i * (y * S y (n - i)))"
by (simp add: ac_simps)
also have "… = (∑i≤n. real (Suc i) *⇩R (S x (Suc i) * S y (n - i)))
+ (∑i≤n. real (Suc n - i) *⇩R (S x i * S y (Suc n - i)))"
by (simp add: times_S Suc_diff_le)
also have "(∑i≤n. real (Suc i) *⇩R (S x (Suc i) * S y (n - i)))
= (∑i≤Suc n. real i *⇩R (S x i * S y (Suc n - i)))"
by (subst sum.atMost_Suc_shift) simp
also have "(∑i≤n. real (Suc n - i) *⇩R (S x i * S y (Suc n - i)))
= (∑i≤Suc n. real (Suc n - i) *⇩R (S x i * S y (Suc n - i)))"
by simp
also have "(∑i≤Suc n. real i *⇩R (S x i * S y (Suc n - i)))
+ (∑i≤Suc n. real (Suc n - i) *⇩R (S x i * S y (Suc n - i)))
= (∑i≤Suc n. real (Suc n) *⇩R (S x i * S y (Suc n - i)))"
by (simp flip: sum.distrib scaleR_add_left of_nat_add)
also have "… = real (Suc n) *⇩R (∑i≤Suc n. S x i * S y (Suc n - i))"
by (simp only: scaleR_right.sum)
finally show "S (x + y) (Suc n) = (∑i≤Suc n. S x i * S y (Suc n - i))"
by (simp del: sum.cl_ivl_Suc)
qed
lemma exp_add_commuting: "x * y = y * x ⟹ exp (x + y) = exp x * exp y"
by (simp only: exp_def Cauchy_product summable_norm_exp exp_series_add_commuting)
lemma exp_times_arg_commute: "exp A * A = A * exp A"
by (simp add: exp_def suminf_mult[symmetric] summable_exp_generic power_commutes suminf_mult2)
lemma exp_add: "exp (x + y) = exp x * exp y"
for x y :: "'a::{real_normed_field,banach}"
by (rule exp_add_commuting) (simp add: ac_simps)
lemma exp_double: "exp(2 * z) = exp z ^ 2"
by (simp add: exp_add_commuting mult_2 power2_eq_square)
lemmas mult_exp_exp = exp_add [symmetric]
lemma exp_of_real: "exp (of_real x) = of_real (exp x)"
unfolding exp_def
apply (subst suminf_of_real [OF summable_exp_generic])
apply (simp add: scaleR_conv_of_real)
done
lemmas of_real_exp = exp_of_real[symmetric]
corollary exp_in_Reals [simp]: "z ∈ ℝ ⟹ exp z ∈ ℝ"
by (metis Reals_cases Reals_of_real exp_of_real)
lemma exp_not_eq_zero [simp]: "exp x ≠ 0"
proof
have "exp x * exp (- x) = 1"
by (simp add: exp_add_commuting[symmetric])
also assume "exp x = 0"
finally show False by simp
qed
lemma exp_minus_inverse: "exp x * exp (- x) = 1"
by (simp add: exp_add_commuting[symmetric])
lemma exp_minus: "exp (- x) = inverse (exp x)"
for x :: "'a::{real_normed_field,banach}"
by (intro inverse_unique [symmetric] exp_minus_inverse)
lemma exp_diff: "exp (x - y) = exp x / exp y"
for x :: "'a::{real_normed_field,banach}"
using exp_add [of x "- y"] by (simp add: exp_minus divide_inverse)
lemma exp_of_nat_mult: "exp (of_nat n * x) = exp x ^ n"
for x :: "'a::{real_normed_field,banach}"
by (induct n) (auto simp: distrib_left exp_add mult.commute)
corollary exp_of_nat2_mult: "exp (x * of_nat n) = exp x ^ n"
for x :: "'a::{real_normed_field,banach}"
by (metis exp_of_nat_mult mult_of_nat_commute)
lemma exp_sum: "finite I ⟹ exp (sum f I) = prod (λx. exp (f x)) I"
by (induct I rule: finite_induct) (auto simp: exp_add_commuting mult.commute)
lemma exp_divide_power_eq:
fixes x :: "'a::{real_normed_field,banach}"
assumes "n > 0"
shows "exp (x / of_nat n) ^ n = exp x"
using assms
proof (induction n arbitrary: x)
case (Suc n)
show ?case
proof (cases "n = 0")
case True
then show ?thesis by simp
next
case False
have [simp]: "1 + (of_nat n * of_nat n + of_nat n * 2) ≠ (0::'a)"
using of_nat_eq_iff [of "1 + n * n + n * 2" "0"]
by simp
from False have [simp]: "x * of_nat n / (1 + of_nat n) / of_nat n = x / (1 + of_nat n)"
by simp
have [simp]: "x / (1 + of_nat n) + x * of_nat n / (1 + of_nat n) = x"
using of_nat_neq_0
by (auto simp add: field_split_simps)
show ?thesis
using Suc.IH [of "x * of_nat n / (1 + of_nat n)"] False
by (simp add: exp_add [symmetric])
qed
qed simp
lemma exp_power_int:
fixes x :: "'a::{real_normed_field,banach}"
shows "exp x powi n = exp (of_int n * x)"
proof (cases "n ≥ 0")
case True
have "exp x powi n = exp x ^ nat n"
using True by (simp add: power_int_def)
thus ?thesis
using True by (subst (asm) exp_of_nat_mult [symmetric]) auto
next
case False
have "exp x powi n = inverse (exp x ^ nat (-n))"
using False by (simp add: power_int_def field_simps)
also have "exp x ^ nat (-n) = exp (of_nat (nat (-n)) * x)"
using False by (subst exp_of_nat_mult) auto
also have "inverse … = exp (-(of_nat (nat (-n)) * x))"
by (subst exp_minus) (auto simp: field_simps)
also have "-(of_nat (nat (-n)) * x) = of_int n * x"
using False by simp
finally show ?thesis .
qed
subsubsection ‹Properties of the Exponential Function on Reals›
text ‹Comparisons of \<^term>‹exp x› with zero.›
text ‹Proof: because every exponential can be seen as a square.›
lemma exp_ge_zero [simp]: "0 ≤ exp x"
for x :: real
proof -
have "0 ≤ exp (x/2) * exp (x/2)"
by simp
then show ?thesis
by (simp add: exp_add [symmetric])
qed
lemma exp_gt_zero [simp]: "0 < exp x"
for x :: real
by (simp add: order_less_le)
lemma not_exp_less_zero [simp]: "¬ exp x < 0"
for x :: real
by (simp add: not_less)
lemma not_exp_le_zero [simp]: "¬ exp x ≤ 0"
for x :: real
by (simp add: not_le)
lemma abs_exp_cancel [simp]: "¦exp x¦ = exp x"
for x :: real
by simp
text ‹Strict monotonicity of exponential.›
lemma exp_ge_add_one_self_aux:
fixes x :: real
assumes "0 ≤ x"
shows "1 + x ≤ exp x"
using order_le_imp_less_or_eq [OF assms]
proof
assume "0 < x"
have "1 + x ≤ (∑n<2. inverse (fact n) * x^n)"
by (auto simp: numeral_2_eq_2)
also have "… ≤ (∑n. inverse (fact n) * x^n)"
using ‹0 < x› by (auto simp add: zero_le_mult_iff intro: sum_le_suminf [OF summable_exp])
finally show "1 + x ≤ exp x"
by (simp add: exp_def)
qed auto
lemma exp_gt_one: "0 < x ⟹ 1 < exp x"
for x :: real
proof -
assume x: "0 < x"
then have "1 < 1 + x" by simp
also from x have "1 + x ≤ exp x"
by (simp add: exp_ge_add_one_self_aux)
finally show ?thesis .
qed
lemma exp_less_mono:
fixes x y :: real
assumes "x < y"
shows "exp x < exp y"
proof -
from ‹x < y› have "0 < y - x" by simp
then have "1 < exp (y - x)" by (rule exp_gt_one)
then have "1 < exp y / exp x" by (simp only: exp_diff)
then show "exp x < exp y" by simp
qed
lemma exp_less_cancel: "exp x < exp y ⟹ x < y"
for x y :: real
unfolding linorder_not_le [symmetric]
by (auto simp: order_le_less exp_less_mono)
lemma exp_less_cancel_iff [iff]: "exp x < exp y ⟷ x < y"
for x y :: real
by (auto intro: exp_less_mono exp_less_cancel)
lemma exp_le_cancel_iff [iff]: "exp x ≤ exp y ⟷ x ≤ y"
for x y :: real
by (auto simp: linorder_not_less [symmetric])
lemma exp_inj_iff [iff]: "exp x = exp y ⟷ x = y"
for x y :: real
by (simp add: order_eq_iff)
text ‹Comparisons of \<^term>‹exp x› with one.›
lemma one_less_exp_iff [simp]: "1 < exp x ⟷ 0 < x"
for x :: real
using exp_less_cancel_iff [where x = 0 and y = x] by simp
lemma exp_less_one_iff [simp]: "exp x < 1 ⟷ x < 0"
for x :: real
using exp_less_cancel_iff [where x = x and y = 0] by simp
lemma one_le_exp_iff [simp]: "1 ≤ exp x ⟷ 0 ≤ x"
for x :: real
using exp_le_cancel_iff [where x = 0 and y = x] by simp
lemma exp_le_one_iff [simp]: "exp x ≤ 1 ⟷ x ≤ 0"
for x :: real
using exp_le_cancel_iff [where x = x and y = 0] by simp
lemma exp_eq_one_iff [simp]: "exp x = 1 ⟷ x = 0"
for x :: real
using exp_inj_iff [where x = x and y = 0] by simp
lemma lemma_exp_total: "1 ≤ y ⟹ ∃x. 0 ≤ x ∧ x ≤ y - 1 ∧ exp x = y"
for y :: real
proof (rule IVT)
assume "1 ≤ y"
then have "0 ≤ y - 1" by simp
then have "1 + (y - 1) ≤ exp (y - 1)"
by (rule exp_ge_add_one_self_aux)
then show "y ≤ exp (y - 1)" by simp
qed (simp_all add: le_diff_eq)
lemma exp_total: "0 < y ⟹ ∃x. exp x = y"
for y :: real
proof (rule linorder_le_cases [of 1 y])
assume "1 ≤ y"
then show "∃x. exp x = y"
by (fast dest: lemma_exp_total)
next
assume "0 < y" and "y ≤ 1"
then have "1 ≤ inverse y"
by (simp add: one_le_inverse_iff)
then obtain x where "exp x = inverse y"
by (fast dest: lemma_exp_total)
then have "exp (- x) = y"
by (simp add: exp_minus)
then show "∃x. exp x = y" ..
qed
subsection ‹Natural Logarithm›
class ln = real_normed_algebra_1 + banach +
fixes ln :: "'a ⇒ 'a"
assumes ln_one [simp]: "ln 1 = 0"
definition powr :: "'a ⇒ 'a ⇒ 'a::ln" (infixr "powr" 80)
where "x powr a ≡ if x = 0 then 0 else exp (a * ln x)"
lemma powr_0 [simp]: "0 powr z = 0"
by (simp add: powr_def)
instantiation real :: ln
begin
definition ln_real :: "real ⇒ real"
where "ln_real x = (THE u. exp u = x)"
instance
by intro_classes (simp add: ln_real_def)
end
lemma powr_eq_0_iff [simp]: "w powr z = 0 ⟷ w = 0"
by (simp add: powr_def)
lemma ln_exp [simp]: "ln (exp x) = x"
for x :: real
by (simp add: ln_real_def)
lemma exp_ln [simp]: "0 < x ⟹ exp (ln x) = x"
for x :: real
by (auto dest: exp_total)
lemma exp_ln_iff [simp]: "exp (ln x) = x ⟷ 0 < x"
for x :: real
by (metis exp_gt_zero exp_ln)
lemma ln_unique: "exp y = x ⟹ ln x = y"
for x :: real
by (erule subst) (rule ln_exp)
lemma ln_mult: "0 < x ⟹ 0 < y ⟹ ln (x * y) = ln x + ln y"
for x :: real
by (rule ln_unique) (simp add: exp_add)
lemma ln_prod: "finite I ⟹ (⋀i. i ∈ I ⟹ f i > 0) ⟹ ln (prod f I) = sum (λx. ln(f x)) I"
for f :: "'a ⇒ real"
by (induct I rule: finite_induct) (auto simp: ln_mult prod_pos)
lemma ln_inverse: "0 < x ⟹ ln (inverse x) = - ln x"
for x :: real
by (rule ln_unique) (simp add: exp_minus)
lemma ln_div: "0 < x ⟹ 0 < y ⟹ ln (x / y) = ln x - ln y"
for x :: real
by (rule ln_unique) (simp add: exp_diff)
lemma ln_realpow: "0 < x ⟹ ln (x^n) = real n * ln x"
by (rule ln_unique) (simp add: exp_of_nat_mult)
lemma ln_less_cancel_iff [simp]: "0 < x ⟹ 0 < y ⟹ ln x < ln y ⟷ x < y"
for x :: real
by (subst exp_less_cancel_iff [symmetric]) simp
lemma ln_le_cancel_iff [simp]: "0 < x ⟹ 0 < y ⟹ ln x ≤ ln y ⟷ x ≤ y"
for x :: real
by (simp add: linorder_not_less [symmetric])
lemma ln_inj_iff [simp]: "0 < x ⟹ 0 < y ⟹ ln x = ln y ⟷ x = y"
for x :: real
by (simp add: order_eq_iff)
lemma ln_add_one_self_le_self: "0 ≤ x ⟹ ln (1 + x) ≤ x"
for x :: real
by (rule exp_le_cancel_iff [THEN iffD1]) (simp add: exp_ge_add_one_self_aux)
lemma ln_less_self [simp]: "0 < x ⟹ ln x < x"
for x :: real
by (rule order_less_le_trans [where y = "ln (1 + x)"]) (simp_all add: ln_add_one_self_le_self)
lemma ln_ge_iff: "⋀x::real. 0 < x ⟹ y ≤ ln x ⟷ exp y ≤ x"
using exp_le_cancel_iff exp_total by force
lemma ln_ge_zero [simp]: "1 ≤ x ⟹ 0 ≤ ln x"
for x :: real
using ln_le_cancel_iff [of 1 x] by simp
lemma ln_ge_zero_imp_ge_one: "0 ≤ ln x ⟹ 0 < x ⟹ 1 ≤ x"
for x :: real
using ln_le_cancel_iff [of 1 x] by simp
lemma ln_ge_zero_iff [simp]: "0 < x ⟹ 0 ≤ ln x ⟷ 1 ≤ x"
for x :: real
using ln_le_cancel_iff [of 1 x] by simp
lemma ln_less_zero_iff [simp]: "0 < x ⟹ ln x < 0 ⟷ x < 1"
for x :: real
using ln_less_cancel_iff [of x 1] by simp
lemma ln_le_zero_iff [simp]: "0 < x ⟹ ln x ≤ 0 ⟷ x ≤ 1"
for x :: real
by (metis less_numeral_extra(1) ln_le_cancel_iff ln_one)
lemma ln_gt_zero: "1 < x ⟹ 0 < ln x"
for x :: real
using ln_less_cancel_iff [of 1 x] by simp
lemma ln_gt_zero_imp_gt_one: "0 < ln x ⟹ 0 < x ⟹ 1 < x"
for x :: real
using ln_less_cancel_iff [of 1 x] by simp
lemma ln_gt_zero_iff [simp]: "0 < x ⟹ 0 < ln x ⟷ 1 < x"
for x :: real
using ln_less_cancel_iff [of 1 x] by simp
lemma ln_eq_zero_iff [simp]: "0 < x ⟹ ln x = 0 ⟷ x = 1"
for x :: real
using ln_inj_iff [of x 1] by simp
lemma ln_less_zero: "0 < x ⟹ x < 1 ⟹ ln x < 0"
for x :: real
by simp
lemma ln_neg_is_const: "x ≤ 0 ⟹ ln x = (THE x. False)"
for x :: real
by (auto simp: ln_real_def intro!: arg_cong[where f = The])
lemma powr_eq_one_iff [simp]:
"a powr x = 1 ⟷ x = 0" if "a > 1" for a x :: real
using that by (auto simp: powr_def split: if_splits)
lemma isCont_ln:
fixes x :: real
assumes "x ≠ 0"
shows "isCont ln x"
proof (cases "0 < x")
case True
then have "isCont ln (exp (ln x))"
by (intro isCont_inverse_function[where d = "¦x¦" and f = exp]) auto
with True show ?thesis
by simp
next
case False
with ‹x ≠ 0› show "isCont ln x"
unfolding isCont_def
by (subst filterlim_cong[OF _ refl, of _ "nhds (ln 0)" _ "λ_. ln 0"])
(auto simp: ln_neg_is_const not_less eventually_at dist_real_def
intro!: exI[of _ "¦x¦"])
qed
lemma tendsto_ln [tendsto_intros]: "(f ⤏ a) F ⟹ a ≠ 0 ⟹ ((λx. ln (f x)) ⤏ ln a) F"
for a :: real
by (rule isCont_tendsto_compose [OF isCont_ln])
lemma continuous_ln:
"continuous F f ⟹ f (Lim F (λx. x)) ≠ 0 ⟹ continuous F (λx. ln (f x :: real))"
unfolding continuous_def by (rule tendsto_ln)
lemma isCont_ln' [continuous_intros]:
"continuous (at x) f ⟹ f x ≠ 0 ⟹ continuous (at x) (λx. ln (f x :: real))"
unfolding continuous_at by (rule tendsto_ln)
lemma continuous_within_ln [continuous_intros]:
"continuous (at x within s) f ⟹ f x ≠ 0 ⟹ continuous (at x within s) (λx. ln (f x :: real))"
unfolding continuous_within by (rule tendsto_ln)
lemma continuous_on_ln [continuous_intros]:
"continuous_on s f ⟹ (∀x∈s. f x ≠ 0) ⟹ continuous_on s (λx. ln (f x :: real))"
unfolding continuous_on_def by (auto intro: tendsto_ln)
lemma DERIV_ln: "0 < x ⟹ DERIV ln x :> inverse x"
for x :: real
by (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"])
(auto intro: DERIV_cong [OF DERIV_exp exp_ln] isCont_ln)
lemma DERIV_ln_divide: "0 < x ⟹ DERIV ln x :> 1 / x"
for x :: real
by (rule DERIV_ln[THEN DERIV_cong]) (simp_all add: divide_inverse)
declare DERIV_ln_divide[THEN DERIV_chain2, derivative_intros]
and DERIV_ln_divide[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemmas has_derivative_ln[derivative_intros] = DERIV_ln[THEN DERIV_compose_FDERIV]
lemma ln_series:
assumes "0 < x" and "x < 2"
shows "ln x = (∑ n. (-1)^n * (1 / real (n + 1)) * (x - 1)^(Suc n))"
(is "ln x = suminf (?f (x - 1))")
proof -
let ?f' = "λx n. (-1)^n * (x - 1)^n"
have "ln x - suminf (?f (x - 1)) = ln 1 - suminf (?f (1 - 1))"
proof (rule DERIV_isconst3 [where x = x])
fix x :: real
assume "x ∈ {0 <..< 2}"
then have "0 < x" and "x < 2" by auto
have "norm (1 - x) < 1"
using ‹0 < x› and ‹x < 2› by auto
have "1 / x = 1 / (1 - (1 - x))" by auto
also have "… = (∑ n. (1 - x)^n)"
using geometric_sums[OF ‹norm (1 - x) < 1›] by (rule sums_unique)
also have "… = suminf (?f' x)"
unfolding power_mult_distrib[symmetric]
by (rule arg_cong[where f=suminf], rule arg_cong[where f="(^)"], auto)
finally have "DERIV ln x :> suminf (?f' x)"
using DERIV_ln[OF ‹0 < x›] unfolding divide_inverse by auto
moreover
have repos: "⋀ h x :: real. h - 1 + x = h + x - 1" by auto
have "DERIV (λx. suminf (?f x)) (x - 1) :>
(∑n. (-1)^n * (1 / real (n + 1)) * real (Suc n) * (x - 1) ^ n)"
proof (rule DERIV_power_series')
show "x - 1 ∈ {- 1<..<1}" and "(0 :: real) < 1"
using ‹0 < x› ‹x < 2› by auto
next
fix x :: real
assume "x ∈ {- 1<..<1}"
then show "summable (λn. (- 1) ^ n * (1 / real (n + 1)) * real (Suc n) * x^n)"
by (simp add: abs_if flip: power_mult_distrib)
qed
then have "DERIV (λx. suminf (?f x)) (x - 1) :> suminf (?f' x)"
unfolding One_nat_def by auto
then have "DERIV (λx. suminf (?f (x - 1))) x :> suminf (?f' x)"
unfolding DERIV_def repos .
ultimately have "DERIV (λx. ln x - suminf (?f (x - 1))) x :> suminf (?f' x) - suminf (?f' x)"
by (rule DERIV_diff)
then show "DERIV (λx. ln x - suminf (?f (x - 1))) x :> 0" by auto
qed (auto simp: assms)
then show ?thesis by auto
qed
lemma exp_first_terms:
fixes x :: "'a::{real_normed_algebra_1,banach}"
shows "exp x = (∑n<k. inverse(fact n) *⇩R (x ^ n)) + (∑n. inverse(fact (n + k)) *⇩R (x ^ (n + k)))"
proof -
have "exp x = suminf (λn. inverse(fact n) *⇩R (x^n))"
by (simp add: exp_def)
also from summable_exp_generic have "… = (∑ n. inverse(fact(n+k)) *⇩R (x ^ (n + k))) +
(∑ n::nat<k. inverse(fact n) *⇩R (x^n))" (is "_ = _ + ?a")
by (rule suminf_split_initial_segment)
finally show ?thesis by simp
qed
lemma exp_first_term: "exp x = 1 + (∑n. inverse (fact (Suc n)) *⇩R (x ^ Suc n))"
for x :: "'a::{real_normed_algebra_1,banach}"
using exp_first_terms[of x 1] by simp
lemma exp_first_two_terms: "exp x = 1 + x + (∑n. inverse (fact (n + 2)) *⇩R (x ^ (n + 2)))"
for x :: "'a::{real_normed_algebra_1,banach}"
using exp_first_terms[of x 2] by (simp add: eval_nat_numeral)
lemma exp_bound:
fixes x :: real
assumes a: "0 ≤ x"
and b: "x ≤ 1"
shows "exp x ≤ 1 + x + x⇧2"
proof -
have "suminf (λn. inverse(fact (n+2)) * (x ^ (n + 2))) ≤ x⇧2"
proof -
have "(λn. x⇧2 / 2 * (1/2) ^ n) sums (x⇧2 / 2 * (1 / (1 - 1/2)))"
by (intro sums_mult geometric_sums) simp
then have sumsx: "(λn. x⇧2 / 2 * (1/2) ^ n) sums x⇧2"
by simp
have "suminf (λn. inverse(fact (n+2)) * (x ^ (n + 2))) ≤ suminf (λn. (x⇧2/2) * ((1/2)^n))"
proof (intro suminf_le allI)
show "inverse (fact (n + 2)) * x ^ (n + 2) ≤ (x⇧2/2) * ((1/2)^n)" for n :: nat
proof -
have "(2::nat) * 2 ^ n ≤ fact (n + 2)"
by (induct n) simp_all
then have "real ((2::nat) * 2 ^ n) ≤ real_of_nat (fact (n + 2))"
by (simp only: of_nat_le_iff)
then have "((2::real) * 2 ^ n) ≤ fact (n + 2)"
unfolding of_nat_fact by simp
then have "inverse (fact (n + 2)) ≤ inverse ((2::real) * 2 ^ n)"
by (rule le_imp_inverse_le) simp
then have "inverse (fact (n + 2)) ≤ 1/(2::real) * (1/2)^n"
by (simp add: power_inverse [symmetric])
then have "inverse (fact (n + 2)) * (x^n * x⇧2) ≤ 1/2 * (1/2)^n * (1 * x⇧2)"
by (rule mult_mono) (rule mult_mono, simp_all add: power_le_one a b)
then show ?thesis
unfolding power_add by (simp add: ac_simps del: fact_Suc)
qed
show "summable (λn. inverse (fact (n + 2)) * x ^ (n + 2))"
by (rule summable_exp [THEN summable_ignore_initial_segment])
show "summable (λn. x⇧2 / 2 * (1/2) ^ n)"
by (rule sums_summable [OF sumsx])
qed
also have "… = x⇧2"
by (rule sums_unique [THEN sym]) (rule sumsx)
finally show ?thesis .
qed
then show ?thesis
unfolding exp_first_two_terms by auto
qed
corollary exp_half_le2: "exp(1/2) ≤ (2::real)"
using exp_bound [of "1/2"]
by (simp add: field_simps)
corollary exp_le: "exp 1 ≤ (3::real)"
using exp_bound [of 1]
by (simp add: field_simps)
lemma exp_bound_half: "norm z ≤ 1/2 ⟹ norm (exp z) ≤ 2"
by (blast intro: order_trans intro!: exp_half_le2 norm_exp)
lemma exp_bound_lemma:
assumes "norm z ≤ 1/2"
shows "norm (exp z) ≤ 1 + 2 * norm z"
proof -
have *: "(norm z)⇧2 ≤ norm z * 1"
unfolding power2_eq_square
by (rule mult_left_mono) (use assms in auto)
have "norm (exp z) ≤ exp (norm z)"
by (rule norm_exp)
also have "… ≤ 1 + (norm z) + (norm z)⇧2"
using assms exp_bound by auto
also have "… ≤ 1 + 2 * norm z"
using * by auto
finally show ?thesis .
qed
lemma real_exp_bound_lemma: "0 ≤ x ⟹ x ≤ 1/2 ⟹ exp x ≤ 1 + 2 * x"
for x :: real
using exp_bound_lemma [of x] by simp
lemma ln_one_minus_pos_upper_bound:
fixes x :: real
assumes a: "0 ≤ x" and b: "x < 1"
shows "ln (1 - x) ≤ - x"
proof -
have "(1 - x) * (1 + x + x⇧2) = 1 - x^3"
by (simp add: algebra_simps power2_eq_square power3_eq_cube)
also have "… ≤ 1"
by (auto simp: a)
finally have "(1 - x) * (1 + x + x⇧2) ≤ 1" .
moreover have c: "0 < 1 + x + x⇧2"
by (simp add: add_pos_nonneg a)
ultimately have "1 - x ≤ 1 / (1 + x + x⇧2)"
by (elim mult_imp_le_div_pos)
also have "… ≤ 1 / exp x"
by (metis a abs_one b exp_bound exp_gt_zero frac_le less_eq_real_def real_sqrt_abs
real_sqrt_pow2_iff real_sqrt_power)
also have "… = exp (- x)"
by (auto simp: exp_minus divide_inverse)
finally have "1 - x ≤ exp (- x)" .
also have "1 - x = exp (ln (1 - x))"
by (metis b diff_0 exp_ln_iff less_iff_diff_less_0 minus_diff_eq)
finally have "exp (ln (1 - x)) ≤ exp (- x)" .
then show ?thesis
by (auto simp only: exp_le_cancel_iff)
qed
lemma exp_ge_add_one_self [simp]: "1 + x ≤ exp x"
for x :: real
proof (cases "0 ≤ x ∨ x ≤ -1")
case True
then show ?thesis
by (meson exp_ge_add_one_self_aux exp_ge_zero order.trans real_add_le_0_iff)
next
case False
then have ln1: "ln (1 + x) ≤ x"
using ln_one_minus_pos_upper_bound [of "-x"] by simp
have "1 + x = exp (ln (1 + x))"
using False by auto
also have "… ≤ exp x"
by (simp add: ln1)
finally show ?thesis .
qed
lemma ln_one_plus_pos_lower_bound:
fixes x :: real
assumes a: "0 ≤ x" and b: "x ≤ 1"
shows "x - x⇧2 ≤ ln (1 + x)"
proof -
have "exp (x - x⇧2) = exp x / exp (x⇧2)"
by (rule exp_diff)
also have "… ≤ (1 + x + x⇧2) / exp (x ⇧2)"
by (metis a b divide_right_mono exp_bound exp_ge_zero)
also have "… ≤ (1 + x + x⇧2) / (1 + x⇧2)"
by (simp add: a divide_left_mono add_pos_nonneg)
also from a have "… ≤ 1 + x"
by (simp add: field_simps add_strict_increasing zero_le_mult_iff)
finally have "exp (x - x⇧2) ≤ 1 + x" .
also have "… = exp (ln (1 + x))"
proof -
from a have "0 < 1 + x" by auto
then show ?thesis
by (auto simp only: exp_ln_iff [THEN sym])
qed
finally have "exp (x - x⇧2) ≤ exp (ln (1 + x))" .
then show ?thesis
by (metis exp_le_cancel_iff)
qed
lemma ln_one_minus_pos_lower_bound:
fixes x :: real
assumes a: "0 ≤ x" and b: "x ≤ 1/2"
shows "- x - 2 * x⇧2 ≤ ln (1 - x)"
proof -
from b have c: "x < 1" by auto
then have "ln (1 - x) = - ln (1 + x / (1 - x))"
by (auto simp: ln_inverse [symmetric] field_simps intro: arg_cong [where f=ln])
also have "- (x / (1 - x)) ≤ …"
proof -
have "ln (1 + x / (1 - x)) ≤ x / (1 - x)"
using a c by (intro ln_add_one_self_le_self) auto
then show ?thesis
by auto
qed
also have "- (x / (1 - x)) = - x / (1 - x)"
by auto
finally have d: "- x / (1 - x) ≤ ln (1 - x)" .
have "0 < 1 - x" using a b by simp
then have e: "- x - 2 * x⇧2 ≤ - x / (1 - x)"
using mult_right_le_one_le[of "x * x" "2 * x"] a b
by (simp add: field_simps power2_eq_square)
from e d show "- x - 2 * x⇧2 ≤ ln (1 - x)"
by (rule order_trans)
qed
lemma ln_add_one_self_le_self2:
fixes x :: real
shows "-1 < x ⟹ ln (1 + x) ≤ x"
by (metis diff_gt_0_iff_gt diff_minus_eq_add exp_ge_add_one_self exp_le_cancel_iff exp_ln minus_less_iff)
lemma abs_ln_one_plus_x_minus_x_bound_nonneg:
fixes x :: real
assumes x: "0 ≤ x" and x1: "x ≤ 1"
shows "¦ln (1 + x) - x¦ ≤ x⇧2"
proof -
from x have "ln (1 + x) ≤ x"
by (rule ln_add_one_self_le_self)
then have "ln (1 + x) - x ≤ 0"
by simp
then have "¦ln(1 + x) - x¦ = - (ln(1 + x) - x)"
by (rule abs_of_nonpos)
also have "… = x - ln (1 + x)"
by simp
also have "… ≤ x⇧2"
proof -
from x x1 have "x - x⇧2 ≤ ln (1 + x)"
by (intro ln_one_plus_pos_lower_bound)
then show ?thesis
by simp
qed
finally show ?thesis .
qed
lemma abs_ln_one_plus_x_minus_x_bound_nonpos:
fixes x :: real
assumes a: "-(1/2) ≤ x" and b: "x ≤ 0"
shows "¦ln (1 + x) - x¦ ≤ 2 * x⇧2"
proof -
have *: "- (-x) - 2 * (-x)⇧2 ≤ ln (1 - (- x))"
by (metis a b diff_zero ln_one_minus_pos_lower_bound minus_diff_eq neg_le_iff_le)
have "¦ln (1 + x) - x¦ = x - ln (1 - (- x))"
using a ln_add_one_self_le_self2 [of x] by (simp add: abs_if)
also have "… ≤ 2 * x⇧2"
using * by (simp add: algebra_simps)
finally show ?thesis .
qed
lemma abs_ln_one_plus_x_minus_x_bound:
fixes x :: real
assumes "¦x¦ ≤ 1/2"
shows "¦ln (1 + x) - x¦ ≤ 2 * x⇧2"
proof (cases "0 ≤ x")
case True
then show ?thesis
using abs_ln_one_plus_x_minus_x_bound_nonneg assms by fastforce
next
case False
then show ?thesis
using abs_ln_one_plus_x_minus_x_bound_nonpos assms by auto
qed
lemma ln_x_over_x_mono:
fixes x :: real
assumes x: "exp 1 ≤ x" "x ≤ y"
shows "ln y / y ≤ ln x / x"
proof -
note x
moreover have "0 < exp (1::real)" by simp
ultimately have a: "0 < x" and b: "0 < y"
by (fast intro: less_le_trans order_trans)+
have "x * ln y - x * ln x = x * (ln y - ln x)"
by (simp add: algebra_simps)
also have "… = x * ln (y / x)"
by (simp only: ln_div a b)
also have "y / x = (x + (y - x)) / x"
by simp
also have "… = 1 + (y - x) / x"
using x a by (simp add: field_simps)
also have "x * ln (1 + (y - x) / x) ≤ x * ((y - x) / x)"
using x a
by (intro mult_left_mono ln_add_one_self_le_self) simp_all
also have "… = y - x"
using a by simp
also have "… = (y - x) * ln (exp 1)" by simp
also have "… ≤ (y - x) * ln x"
using a x exp_total of_nat_1 x(1) by (fastforce intro: mult_left_mono)
also have "… = y * ln x - x * ln x"
by (rule left_diff_distrib)
finally have "x * ln y ≤ y * ln x"
by arith
then have "ln y ≤ (y * ln x) / x"
using a by (simp add: field_simps)
also have "… = y * (ln x / x)" by simp
finally show ?thesis
using b by (simp add: field_simps)
qed
lemma ln_le_minus_one: "0 < x ⟹ ln x ≤ x - 1"
for x :: real
using exp_ge_add_one_self[of "ln x"] by simp
corollary ln_diff_le: "0 < x ⟹ 0 < y ⟹ ln x - ln y ≤ (x - y) / y"
for x :: real
by (simp add: ln_div [symmetric] diff_divide_distrib ln_le_minus_one)
lemma ln_eq_minus_one:
fixes x :: real
assumes "0 < x" "ln x = x - 1"
shows "x = 1"
proof -
let ?l = "λy. ln y - y + 1"
have D: "⋀x::real. 0 < x ⟹ DERIV ?l x :> (1 / x - 1)"
by (auto intro!: derivative_eq_intros)
show ?thesis
proof (cases rule: linorder_cases)
assume "x < 1"
from dense[OF ‹x < 1›] obtain a where "x < a" "a < 1" by blast
from ‹x < a› have "?l x < ?l a"
proof (rule DERIV_pos_imp_increasing)
fix y
assume "x ≤ y" "y ≤ a"
with ‹0 < x› ‹a < 1› have "0 < 1 / y - 1" "0 < y"
by (auto simp: field_simps)
with D show "∃z. DERIV ?l y :> z ∧ 0 < z" by blast
qed
also have "… ≤ 0"
using ln_le_minus_one ‹0 < x› ‹x < a› by (auto simp: field_simps)
finally show "x = 1" using assms by auto
next
assume "1 < x"
from dense[OF this] obtain a where "1 < a" "a < x" by blast
from ‹a < x› have "?l x < ?l a"
proof (rule DERIV_neg_imp_decreasing)
fix y
assume "a ≤ y" "y ≤ x"
with ‹1 < a› have "1 / y - 1 < 0" "0 < y"
by (auto simp: field_simps)
with D show "∃z. DERIV ?l y :> z ∧ z < 0"
by blast
qed
also have "… ≤ 0"
using ln_le_minus_one ‹1 < a› by (auto simp: field_simps)
finally show "x = 1" using assms by auto
next
assume "x = 1"
then show ?thesis by simp
qed
qed
lemma ln_x_over_x_tendsto_0: "((λx::real. ln x / x) ⤏ 0) at_top"
proof (rule lhospital_at_top_at_top[where f' = inverse and g' = "λ_. 1"])
from eventually_gt_at_top[of "0::real"]
show "∀⇩F x in at_top. (ln has_real_derivative inverse x) (at x)"
by eventually_elim (auto intro!: derivative_eq_intros simp: field_simps)
qed (use tendsto_inverse_0 in
‹auto simp: filterlim_ident dest!: tendsto_mono[OF at_top_le_at_infinity]›)
lemma exp_ge_one_plus_x_over_n_power_n:
assumes "x ≥ - real n" "n > 0"
shows "(1 + x / of_nat n) ^ n ≤ exp x"
proof (cases "x = - of_nat n")
case False
from assms False have "(1 + x / of_nat n) ^ n = exp (of_nat n * ln (1 + x / of_nat n))"
by (subst exp_of_nat_mult, subst exp_ln) (simp_all add: field_simps)
also from assms False have "ln (1 + x / real n) ≤ x / real n"
by (intro ln_add_one_self_le_self2) (simp_all add: field_simps)
with assms have "exp (of_nat n * ln (1 + x / of_nat n)) ≤ exp x"
by (simp add: field_simps)
finally show ?thesis .
next
case True
then show ?thesis by (simp add: zero_power)
qed
lemma exp_ge_one_minus_x_over_n_power_n:
assumes "x ≤ real n" "n > 0"
shows "(1 - x / of_nat n) ^ n ≤ exp (-x)"
using exp_ge_one_plus_x_over_n_power_n[of n "-x"] assms by simp
lemma exp_at_bot: "(exp ⤏ (0::real)) at_bot"
unfolding tendsto_Zfun_iff
proof (rule ZfunI, simp add: eventually_at_bot_dense)
fix r :: real
assume "0 < r"
have "exp x < r" if "x < ln r" for x
by (metis ‹0 < r› exp_less_mono exp_ln that)
then show "∃k. ∀n<k. exp n < r" by auto
qed
lemma exp_at_top: "LIM x at_top. exp x :: real :> at_top"
by (rule filterlim_at_top_at_top[where Q="λx. True" and P="λx. 0 < x" and g=ln])
(auto intro: eventually_gt_at_top)
lemma lim_exp_minus_1: "((λz::'a. (exp(z) - 1) / z) ⤏ 1) (at 0)"
for x :: "'a::{real_normed_field,banach}"
proof -
have "((λz::'a. exp(z) - 1) has_field_derivative 1) (at 0)"
by (intro derivative_eq_intros | simp)+
then show ?thesis
by (simp add: Deriv.has_field_derivative_iff)
qed
lemma ln_at_0: "LIM x at_right 0. ln (x::real) :> at_bot"
by (rule filterlim_at_bot_at_right[where Q="λx. 0 < x" and P="λx. True" and g=exp])
(auto simp: eventually_at_filter)
lemma ln_at_top: "LIM x at_top. ln (x::real) :> at_top"
by (rule filterlim_at_top_at_top[where Q="λx. 0 < x" and P="λx. True" and g=exp])
(auto intro: eventually_gt_at_top)
lemma filtermap_ln_at_top: "filtermap (ln::real ⇒ real) at_top = at_top"
by (intro filtermap_fun_inverse[of exp] exp_at_top ln_at_top) auto
lemma filtermap_exp_at_top: "filtermap (exp::real ⇒ real) at_top = at_top"
by (intro filtermap_fun_inverse[of ln] exp_at_top ln_at_top)
(auto simp: eventually_at_top_dense)
lemma filtermap_ln_at_right: "filtermap ln (at_right (0::real)) = at_bot"
by (auto intro!: filtermap_fun_inverse[where g="λx. exp x"] ln_at_0
simp: filterlim_at exp_at_bot)
lemma tendsto_power_div_exp_0: "((λx. x ^ k / exp x) ⤏ (0::real)) at_top"
proof (induct k)
case 0
show "((λx. x ^ 0 / exp x) ⤏ (0::real)) at_top"
by (simp add: inverse_eq_divide[symmetric])
(metis filterlim_compose[OF tendsto_inverse_0] exp_at_top filterlim_mono
at_top_le_at_infinity order_refl)
next
case (Suc k)
show ?case
proof (rule lhospital_at_top_at_top)
show "eventually (λx. DERIV (λx. x ^ Suc k) x :> (real (Suc k) * x^k)) at_top"
by eventually_elim (intro derivative_eq_intros, auto)
show "eventually (λx. DERIV exp x :> exp x) at_top"
by eventually_elim auto
show "eventually (λx. exp x ≠ 0) at_top"
by auto
from tendsto_mult[OF tendsto_const Suc, of "real (Suc k)"]
show "((λx. real (Suc k) * x ^ k / exp x) ⤏ 0) at_top"
by simp
qed (rule exp_at_top)
qed
subsubsection‹ A couple of simple bounds›
lemma exp_plus_inverse_exp:
fixes x::real
shows "2 ≤ exp x + inverse (exp x)"
proof -
have "2 ≤ exp x + exp (-x)"
using exp_ge_add_one_self [of x] exp_ge_add_one_self [of "-x"]
by linarith
then show ?thesis
by (simp add: exp_minus)
qed
lemma real_le_x_sinh:
fixes x::real
assumes "0 ≤ x"
shows "x ≤ (exp x - inverse(exp x)) / 2"
proof -
have *: "exp a - inverse(exp a) - 2*a ≤ exp b - inverse(exp b) - 2*b" if "a ≤ b" for a b::real
using exp_plus_inverse_exp
by (fastforce intro: derivative_eq_intros DERIV_nonneg_imp_nondecreasing [OF that])
show ?thesis
using*[OF assms] by simp
qed
lemma real_le_abs_sinh:
fixes x::real
shows "abs x ≤ abs((exp x - inverse(exp x)) / 2)"
proof (cases "0 ≤ x")
case True
show ?thesis
using real_le_x_sinh [OF True] True by (simp add: abs_if)
next
case False
have "-x ≤ (exp(-x) - inverse(exp(-x))) / 2"
by (meson False linear neg_le_0_iff_le real_le_x_sinh)
also have "… ≤ ¦(exp x - inverse (exp x)) / 2¦"
by (metis (no_types, opaque_lifting) abs_divide abs_le_iff abs_minus_cancel
add.inverse_inverse exp_minus minus_diff_eq order_refl)
finally show ?thesis
using False by linarith
qed
subsection‹The general logarithm›
definition log :: "real ⇒ real ⇒ real"
where "log a x = ln x / ln a"
lemma tendsto_log [tendsto_intros]:
"(f ⤏ a) F ⟹ (g ⤏ b) F ⟹ 0 < a ⟹ a ≠ 1 ⟹ 0 < b ⟹
((λx. log (f x) (g x)) ⤏ log a b) F"
unfolding log_def by (intro tendsto_intros) auto
lemma continuous_log:
assumes "continuous F f"
and "continuous F g"
and "0 < f (Lim F (λx. x))"
and "f (Lim F (λx. x)) ≠ 1"
and "0 < g (Lim F (λx. x))"
shows "continuous F (λx. log (f x) (g x))"
using assms unfolding continuous_def by (rule tendsto_log)
lemma continuous_at_within_log[continuous_intros]:
assumes "continuous (at a within s) f"
and "continuous (at a within s) g"
and "0 < f a"
and "f a ≠ 1"
and "0 < g a"
shows "continuous (at a within s) (λx. log (f x) (g x))"
using assms unfolding continuous_within by (rule tendsto_log)
lemma isCont_log[continuous_intros, simp]:
assumes "isCont f a" "isCont g a" "0 < f a" "f a ≠ 1" "0 < g a"
shows "isCont (λx. log (f x) (g x)) a"
using assms unfolding continuous_at by (rule tendsto_log)
lemma continuous_on_log[continuous_intros]:
assumes "continuous_on s f" "continuous_on s g"
and "∀x∈s. 0 < f x" "∀x∈s. f x ≠ 1" "∀x∈s. 0 < g x"
shows "continuous_on s (λx. log (f x) (g x))"
using assms unfolding continuous_on_def by (fast intro: tendsto_log)
lemma powr_one_eq_one [simp]: "1 powr a = 1"
by (simp add: powr_def)
lemma powr_zero_eq_one [simp]: "x powr 0 = (if x = 0 then 0 else 1)"
by (simp add: powr_def)
lemma powr_one_gt_zero_iff [simp]: "x powr 1 = x ⟷ 0 ≤ x"
for x :: real
by (auto simp: powr_def)
declare powr_one_gt_zero_iff [THEN iffD2, simp]
lemma powr_diff:
fixes w:: "'a::{ln,real_normed_field}" shows "w powr (z1 - z2) = w powr z1 / w powr z2"
by (simp add: powr_def algebra_simps exp_diff)
lemma powr_mult: "0 ≤ x ⟹ 0 ≤ y ⟹ (x * y) powr a = (x powr a) * (y powr a)"
for a x y :: real
by (simp add: powr_def exp_add [symmetric] ln_mult distrib_left)
lemma powr_ge_pzero [simp]: "0 ≤ x powr y"
for x y :: real
by (simp add: powr_def)
lemma powr_non_neg[simp]: "¬a powr x < 0" for a x::real
using powr_ge_pzero[of a x] by arith
lemma inverse_powr: "⋀y::real. 0 ≤ y ⟹ inverse y powr a = inverse (y powr a)"
by (simp add: exp_minus ln_inverse powr_def)
lemma powr_divide: "⟦0 ≤ x; 0 ≤ y⟧ ⟹ (x / y) powr a = (x powr a) / (y powr a)"
for a b x :: real
by (simp add: divide_inverse powr_mult inverse_powr)
lemma powr_add: "x powr (a + b) = (x powr a) * (x powr b)"
for a b x :: "'a::{ln,real_normed_field}"
by (simp add: powr_def exp_add [symmetric] distrib_right)
lemma powr_mult_base: "0 ≤ x ⟹x * x powr y = x powr (1 + y)"
for x :: real
by (auto simp: powr_add)
lemma powr_powr: "(x powr a) powr b = x powr (a * b)"
for a b x :: real
by (simp add: powr_def)
lemma powr_powr_swap: "(x powr a) powr b = (x powr b) powr a"
for a b x :: real
by (simp add: powr_powr mult.commute)
lemma powr_minus: "x powr (- a) = inverse (x powr a)"
for a x :: "'a::{ln,real_normed_field}"
by (simp add: powr_def exp_minus [symmetric])
lemma powr_minus_divide: "x powr (- a) = 1/(x powr a)"
for a x :: "'a::{ln,real_normed_field}"
by (simp add: divide_inverse powr_minus)
lemma powr_sum: "x ≠ 0 ⟹ finite A ⟹ x powr sum f A = (∏y∈A. x powr f y)"
by (simp add: powr_def exp_sum sum_distrib_right)
lemma divide_powr_uminus: "a / b powr c = a * b powr (- c)"
for a b c :: real
by (simp add: powr_minus_divide)
lemma powr_less_mono: "a < b ⟹ 1 < x ⟹ x powr a < x powr b"
for a b x :: real
by (simp add: powr_def)
lemma powr_less_cancel: "x powr a < x powr b ⟹ 1 < x ⟹ a < b"
for a b x :: real
by (simp add: powr_def)
lemma powr_less_cancel_iff [simp]: "1 < x ⟹ x powr a < x powr b ⟷ a < b"
for a b x :: real
by (blast intro: powr_less_cancel powr_less_mono)
lemma powr_le_cancel_iff [simp]: "1 < x ⟹ x powr a ≤ x powr b ⟷ a ≤ b"
for a b x :: real
by (simp add: linorder_not_less [symmetric])
lemma powr_realpow: "0 < x ⟹ x powr (real n) = x^n"
by (induction n) (simp_all add: ac_simps powr_add)
lemma powr_realpow': "(z :: real) ≥ 0 ⟹ n ≠ 0 ⟹ z powr of_nat n = z ^ n"
by (cases "z = 0") (auto simp: powr_realpow)
lemma powr_real_of_int':
assumes "x ≥ 0" "x ≠ 0 ∨ n > 0"
shows "x powr real_of_int n = power_int x n"
by (metis assms exp_ln_iff exp_power_int nless_le power_int_eq_0_iff powr_def)
lemma log_ln: "ln x = log (exp(1)) x"
by (simp add: log_def)
lemma DERIV_log:
assumes "x > 0"
shows "DERIV (λy. log b y) x :> 1 / (ln b * x)"
proof -
define lb where "lb = 1 / ln b"
moreover have "DERIV (λy. lb * ln y) x :> lb / x"
using ‹x > 0› by (auto intro!: derivative_eq_intros)
ultimately show ?thesis
by (simp add: log_def)
qed
lemmas DERIV_log[THEN DERIV_chain2, derivative_intros]
and DERIV_log[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemma powr_log_cancel [simp]: "0 < a ⟹ a ≠ 1 ⟹ 0 < x ⟹ a powr (log a x) = x"
by (simp add: powr_def log_def)
lemma log_powr_cancel [simp]: "0 < a ⟹ a ≠ 1 ⟹ log a (a powr y) = y"
by (simp add: log_def powr_def)
lemma log_mult:
"0 < a ⟹ a ≠ 1 ⟹ 0 < x ⟹ 0 < y ⟹
log a (x * y) = log a x + log a y"
by (simp add: log_def ln_mult divide_inverse distrib_right)
lemma log_eq_div_ln_mult_log:
"0 < a ⟹ a ≠ 1 ⟹ 0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹
log a x = (ln b/ln a) * log b x"
by (simp add: log_def divide_inverse)
text‹Base 10 logarithms›
lemma log_base_10_eq1: "0 < x ⟹ log 10 x = (ln (exp 1) / ln 10) * ln x"
by (simp add: log_def)
lemma log_base_10_eq2: "0 < x ⟹ log 10 x = (log 10 (exp 1)) * ln x"
by (simp add: log_def)
lemma log_one [simp]: "log a 1 = 0"
by (simp add: log_def)
lemma log_eq_one [simp]: "0 < a ⟹ a ≠ 1 ⟹ log a a = 1"
by (simp add: log_def)
lemma log_inverse: "0 < a ⟹ a ≠ 1 ⟹ 0 < x ⟹ log a (inverse x) = - log a x"
using ln_inverse log_def by auto
lemma log_divide: "0 < a ⟹ a ≠ 1 ⟹ 0 < x ⟹ 0 < y ⟹ log a (x/y) = log a x - log a y"
by (simp add: log_mult divide_inverse log_inverse)
lemma powr_gt_zero [simp]: "0 < x powr a ⟷ x ≠ 0"
for a x :: real
by (simp add: powr_def)
lemma powr_nonneg_iff[simp]: "a powr x ≤ 0 ⟷ a = 0"
for a x::real
by (meson not_less powr_gt_zero)
lemma log_add_eq_powr: "0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹ log b x + y = log b (x * b powr y)"
and add_log_eq_powr: "0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹ y + log b x = log b (b powr y * x)"
and log_minus_eq_powr: "0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹ log b x - y = log b (x * b powr -y)"
and minus_log_eq_powr: "0 < b ⟹ b ≠ 1 ⟹ 0 < x ⟹ y - log b x = log b (b powr y / x)"
by (simp_all add: log_mult log_divide)
lemma log_less_cancel_iff [simp]: "1 < a ⟹ 0 < x ⟹ 0 < y ⟹ log a x < log a y ⟷ x < y"
using powr_less_cancel_iff [of a] powr_log_cancel [of a x] powr_log_cancel [of a y]
by (metis less_eq_real_def less_trans not_le zero_less_one)
lemma log_inj:
assumes "1 < b"
shows "inj_on (log b) {0 <..}"
proof (rule inj_onI, simp)
fix x y
assume pos: "0 < x" "0 < y" and *: "log b x = log b y"
show "x = y"
proof (cases rule: linorder_cases)
assume "x = y"
then show ?thesis by simp
next
assume "x < y"
then have "log b x < log b y"
using log_less_cancel_iff[OF ‹1 < b›] pos by simp
then show ?thesis using * by simp
next
assume "y < x"
then have "log b y < log b x"
using log_less_cancel_iff[OF ‹1 < b›] pos by simp
then show ?thesis using * by simp
qed
qed
lemma log_le_cancel_iff [simp]: "1 < a ⟹ 0 < x ⟹ 0 < y ⟹ log a x ≤ log a y ⟷ x ≤ y"
by (simp add: linorder_not_less [symmetric])
lemma zero_less_log_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ 0 < log a x ⟷ 1 < x"
using log_less_cancel_iff[of a 1 x] by simp
lemma zero_le_log_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ 0 ≤ log a x ⟷ 1 ≤ x"
using log_le_cancel_iff[of a 1 x] by simp
lemma log_less_zero_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ log a x < 0 ⟷ x < 1"
using log_less_cancel_iff[of a x 1] by simp
lemma log_le_zero_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ log a x ≤ 0 ⟷ x ≤ 1"
using log_le_cancel_iff[of a x 1] by simp
lemma one_less_log_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ 1 < log a x ⟷ a < x"
using log_less_cancel_iff[of a a x] by simp
lemma one_le_log_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ 1 ≤ log a x ⟷ a ≤ x"
using log_le_cancel_iff[of a a x] by simp
lemma log_less_one_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ log a x < 1 ⟷ x < a"
using log_less_cancel_iff[of a x a] by simp
lemma log_le_one_cancel_iff[simp]: "1 < a ⟹ 0 < x ⟹ log a x ≤ 1 ⟷ x ≤ a"
using log_le_cancel_iff[of a x a] by simp
lemma le_log_iff:
fixes b x y :: real
assumes "1 < b" "x > 0"
shows "y ≤ log b x ⟷ b powr y ≤ x"
using assms
by (metis less_irrefl less_trans powr_le_cancel_iff powr_log_cancel zero_less_one)
lemma less_log_iff:
assumes "1 < b" "x > 0"
shows "y < log b x ⟷ b powr y < x"
by (metis assms dual_order.strict_trans less_irrefl powr_less_cancel_iff
powr_log_cancel zero_less_one)
lemma
assumes "1 < b" "x > 0"
shows log_less_iff: "log b x < y ⟷ x < b powr y"
and log_le_iff: "log b x ≤ y ⟷ x ≤ b powr y"
using le_log_iff[OF assms, of y] less_log_iff[OF assms, of y]
by auto
lemmas powr_le_iff = le_log_iff[symmetric]
and powr_less_iff = less_log_iff[symmetric]
and less_powr_iff = log_less_iff[symmetric]
and le_powr_iff = log_le_iff[symmetric]
lemma le_log_of_power:
assumes "b ^ n ≤ m" "1 < b"
shows "n ≤ log b m"
proof -
from assms have "0 < m" by (metis less_trans zero_less_power less_le_trans zero_less_one)
thus ?thesis using assms by (simp add: le_log_iff powr_realpow)
qed
lemma le_log2_of_power: "2 ^ n ≤ m ⟹ n ≤ log 2 m" for m n :: nat
using le_log_of_power[of 2] by simp
lemma log_of_power_le: "⟦ m ≤ b ^ n; b > 1; m > 0 ⟧ ⟹ log b (real m) ≤ n"
by (simp add: log_le_iff powr_realpow)
lemma log2_of_power_le: "⟦ m ≤ 2 ^ n; m > 0 ⟧ ⟹ log 2 m ≤ n" for m n :: nat
using log_of_power_le[of _ 2] by simp
lemma log_of_power_less: "⟦ m < b ^ n; b > 1; m > 0 ⟧ ⟹ log b (real m) < n"
by (simp add: log_less_iff powr_realpow)
lemma log2_of_power_less: "⟦ m < 2 ^ n; m > 0 ⟧ ⟹ log 2 m < n" for m n :: nat
using log_of_power_less[of _ 2] by simp
lemma less_log_of_power:
assumes "b ^ n < m" "1 < b"
shows "n < log b m"
proof -
have "0 < m" by (metis assms less_trans zero_less_power zero_less_one)
thus ?thesis using assms by (simp add: less_log_iff powr_realpow)
qed
lemma less_log2_of_power: "2 ^ n < m ⟹ n < log 2 m" for m n :: nat
using less_log_of_power[of 2] by simp
lemma gr_one_powr[simp]:
fixes x y :: real shows "⟦ x > 1; y > 0 ⟧ ⟹ 1 < x powr y"
by(simp add: less_powr_iff)
lemma log_pow_cancel [simp]:
"a > 0 ⟹ a ≠ 1 ⟹ log a (a ^ b) = b"
by (simp add: ln_realpow log_def)
lemma floor_log_eq_powr_iff: "x > 0 ⟹ b > 1 ⟹ ⌊log b x⌋ = k ⟷ b powr k ≤ x ∧ x < b powr (k + 1)"
by (auto simp: floor_eq_iff powr_le_iff less_powr_iff)
lemma floor_log_nat_eq_powr_iff:
fixes b n k :: nat
shows "⟦ b ≥ 2; k > 0 ⟧ ⟹ floor (log b (real k)) = n ⟷ b^n ≤ k ∧ k < b^(n+1)"
by (auto simp: floor_log_eq_powr_iff powr_add powr_realpow
of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
simp del: of_nat_power of_nat_mult)
lemma floor_log_nat_eq_if:
fixes b n k :: nat
assumes "b^n ≤ k" "k < b^(n+1)" "b ≥ 2"
shows "floor (log b (real k)) = n"
proof -
have "k ≥ 1"
using assms linorder_le_less_linear by force
with assms show ?thesis
by(simp add: floor_log_nat_eq_powr_iff)
qed
lemma ceiling_log_eq_powr_iff:
"⟦ x > 0; b > 1 ⟧ ⟹ ⌈log b x⌉ = int k + 1 ⟷ b powr k < x ∧ x ≤ b powr (k + 1)"
by (auto simp: ceiling_eq_iff powr_less_iff le_powr_iff)
lemma ceiling_log_nat_eq_powr_iff:
fixes b n k :: nat
shows "⟦ b ≥ 2; k > 0 ⟧ ⟹ ceiling (log b (real k)) = int n + 1 ⟷ (b^n < k ∧ k ≤ b^(n+1))"
using ceiling_log_eq_powr_iff
by (auto simp: powr_add powr_realpow of_nat_power[symmetric] of_nat_mult[symmetric] ac_simps
simp del: of_nat_power of_nat_mult)
lemma ceiling_log_nat_eq_if:
fixes b n k :: nat
assumes "b^n < k" "k ≤ b^(n+1)" "b ≥ 2"
shows "⌈log (real b) (real k)⌉ = int n + 1"
using assms ceiling_log_nat_eq_powr_iff by force
lemma floor_log2_div2:
fixes n :: nat
assumes "n ≥ 2"
shows "⌊log 2 (real n)⌋ = ⌊log 2 (n div 2)⌋ + 1"
proof cases
assume "n=2" thus ?thesis by simp
next
let ?m = "n div 2"
assume "n≠2"
hence "1 ≤ ?m" using assms by arith
then obtain i where i: "2 ^ i ≤ ?m" "?m < 2 ^ (i + 1)"
using ex_power_ivl1[of 2 ?m] by auto
have "2^(i+1) ≤ 2*?m" using i(1) by simp
also have "2*?m ≤ n" by arith
finally have *: "2^(i+1) ≤ …" .
have "n < 2^(i+1+1)" using i(2) by simp
from floor_log_nat_eq_if[OF * this] floor_log_nat_eq_if[OF i]
show ?thesis by simp
qed
lemma ceiling_log2_div2:
assumes "n ≥ 2"
shows "ceiling(log 2 (real n)) = ceiling(log 2 ((n-1) div 2 + 1)) + 1"
proof cases
assume "n=2" thus ?thesis by simp
next
let ?m = "(n-1) div 2 + 1"
assume "n≠2"
hence "2 ≤ ?m" using assms by arith
then obtain i where i: "2 ^ i < ?m" "?m ≤ 2 ^ (i + 1)"
using ex_power_ivl2[of 2 ?m] by auto
have "n ≤ 2*?m" by arith
also have "2*?m ≤ 2 ^ ((i+1)+1)" using i(2) by simp
finally have *: "n ≤ …" .
have "2^(i+1) < n" using i(1) by (auto simp: less_Suc_eq_0_disj)
from ceiling_log_nat_eq_if[OF this *] ceiling_log_nat_eq_if[OF i]
show ?thesis by simp
qed
lemma powr_real_of_int:
"x > 0 ⟹ x powr real_of_int n = (if n ≥ 0 then x ^ nat n else inverse (x ^ nat (- n)))"
using powr_realpow[of x "nat n"] powr_realpow[of x "nat (-n)"]
by (auto simp: field_simps powr_minus)
lemma powr_numeral [simp]: "0 ≤ x ⟹ x powr (numeral n :: real) = x ^ (numeral n)"
by (metis less_le power_zero_numeral powr_0 of_nat_numeral powr_realpow)
lemma powr_int:
assumes "x > 0"
shows "x powr i = (if i ≥ 0 then x ^ nat i else 1 / x ^ nat (-i))"
by (simp add: assms inverse_eq_divide powr_real_of_int)
lemma power_of_nat_log_ge: "b > 1 ⟹ b ^ nat ⌈log b x⌉ ≥ x"
by (smt (verit) less_log_of_power of_nat_ceiling)
lemma power_of_nat_log_le:
assumes "b > 1" "x≥1"
shows "b ^ nat ⌊log b x⌋ ≤ x"
proof -
have "⌊log b x⌋ ≥ 0"
using assms by auto
then show ?thesis
by (smt (verit) assms le_log_iff of_int_floor_le powr_int)
qed
definition powr_real :: "real ⇒ real ⇒ real"
where [code_abbrev, simp]: "powr_real = Transcendental.powr"
lemma compute_powr_real [code]:
"powr_real b i =
(if b ≤ 0 then Code.abort (STR ''powr_real with nonpositive base'') (λ_. powr_real b i)
else if ⌊i⌋ = i then (if 0 ≤ i then b ^ nat ⌊i⌋ else 1 / b ^ nat ⌊- i⌋)
else Code.abort (STR ''powr_real with non-integer exponent'') (λ_. powr_real b i))"
for b i :: real
by (auto simp: powr_int)
lemma powr_one: "0 ≤ x ⟹ x powr 1 = x"
for x :: real
using powr_realpow [of x 1] by simp
lemma powr_neg_one: "0 < x ⟹ x powr - 1 = 1 / x"
for x :: real
using powr_int [of x "- 1"] by simp
lemma powr_neg_numeral: "0 < x ⟹ x powr - numeral n = 1 / x ^ numeral n"
for x :: real
using powr_int [of x "- numeral n"] by simp
lemma root_powr_inverse: "0 < n ⟹ 0 < x ⟹ root n x = x powr (1/n)"
by (rule real_root_pos_unique) (auto simp: powr_realpow[symmetric] powr_powr)
lemma ln_powr: "x ≠ 0 ⟹ ln (x powr y) = y * ln x"
for x :: real
by (simp add: powr_def)
lemma ln_root: "n > 0 ⟹ b > 0 ⟹ ln (root n b) = ln b / n"
by (simp add: root_powr_inverse ln_powr)
lemma ln_sqrt: "0 < x ⟹ ln (sqrt x) = ln x / 2"
by (simp add: ln_powr ln_powr[symmetric] mult.commute)
lemma log_root: "n > 0 ⟹ a > 0 ⟹ log b (root n a) = log b a / n"
by (simp add: log_def ln_root)
lemma log_powr: "x ≠ 0 ⟹ log b (x powr y) = y * log b x"
by (simp add: log_def ln_powr)
lemma log_nat_power: "0 < x ⟹ log b (x^n) = real n * log b x"
by (simp add: log_powr powr_realpow [symmetric])
lemma log_of_power_eq:
assumes "m = b ^ n" "b > 1"
shows "n = log b (real m)"
proof -
have "n = log b (b ^ n)" using assms(2) by (simp add: log_nat_power)
also have "… = log b m" using assms by simp
finally show ?thesis .
qed
lemma log2_of_power_eq: "m = 2 ^ n ⟹ n = log 2 m" for m n :: nat
using log_of_power_eq[of _ 2] by simp
lemma log_base_change: "0 < a ⟹ a ≠ 1 ⟹ log b x = log a x / log a b"
by (simp add: log_def)
lemma log_base_pow: "0 < a ⟹ log (a ^ n) x = log a x / n"
by (simp add: log_def ln_realpow)
lemma log_base_powr: "a ≠ 0 ⟹ log (a powr b) x = log a x / b"
by (simp add: log_def ln_powr)
lemma log_base_root: "n > 0 ⟹ b > 0 ⟹ log (root n b) x = n * (log b x)"
by (simp add: log_def ln_root)
lemma ln_bound: "0 < x ⟹ ln x ≤ x" for x :: real
using ln_le_minus_one by force
lemma powr_mono:
fixes x :: real
assumes "a ≤ b" and "1 ≤ x" shows "x powr a ≤ x powr b"
using assms less_eq_real_def by auto
lemma ge_one_powr_ge_zero: "1 ≤ x ⟹ 0 ≤ a ⟹ 1 ≤ x powr a"
for x :: real
using powr_mono by fastforce
lemma powr_less_mono2: "0 < a ⟹ 0 ≤ x ⟹ x < y ⟹ x powr a < y powr a"
for x :: real
by (simp add: powr_def)
lemma powr_less_mono2_neg: "a < 0 ⟹ 0 < x ⟹ x < y ⟹ y powr a < x powr a"
for x :: real
by (simp add: powr_def)
lemma powr_mono2: "x powr a ≤ y powr a" if "0 ≤ a" "0 ≤ x" "x ≤ y"
for x :: real
using less_eq_real_def powr_less_mono2 that by auto
lemma powr_le1: "0 ≤ a ⟹ 0 ≤ x ⟹ x ≤ 1 ⟹ x powr a ≤ 1"
for x :: real
using powr_mono2 by fastforce
lemma powr_mono2':
fixes a x y :: real
assumes "a ≤ 0" "x > 0" "x ≤ y"
shows "x powr a ≥ y powr a"
proof -
from assms have "x powr - a ≤ y powr - a"
by (intro powr_mono2) simp_all
with assms show ?thesis
by (auto simp: powr_minus field_simps)
qed
lemma powr_mono_both:
fixes x :: real
assumes "0 ≤ a" "a ≤ b" "1 ≤ x" "x ≤ y"
shows "x powr a ≤ y powr b"
by (meson assms order.trans powr_mono powr_mono2 zero_le_one)
lemma powr_inj: "0 < a ⟹ a ≠ 1 ⟹ a powr x = a powr y ⟷ x = y"
for x :: real
unfolding powr_def exp_inj_iff by simp
lemma powr_half_sqrt: "0 ≤ x ⟹ x powr (1/2) = sqrt x"
by (simp add: powr_def root_powr_inverse sqrt_def)
lemma square_powr_half [simp]:
fixes x::real shows "x⇧2 powr (1/2) = ¦x¦"
by (simp add: powr_half_sqrt)
lemma ln_powr_bound: "1 ≤ x ⟹ 0 < a ⟹ ln x ≤ (x powr a) / a"
for x :: real
by (metis exp_gt_zero linear ln_eq_zero_iff ln_exp ln_less_self ln_powr mult.commute
mult_imp_le_div_pos not_less powr_gt_zero)
lemma ln_powr_bound2:
fixes x :: real
assumes "1 < x" and "0 < a"
shows "(ln x) powr a ≤ (a powr a) * x"
proof -
from assms have "ln x ≤ (x powr (1 / a)) / (1 / a)"
by (metis less_eq_real_def ln_powr_bound zero_less_divide_1_iff)
also have "… = a * (x powr (1 / a))"
by simp
finally have "(ln x) powr a ≤ (a * (x powr (1 / a))) powr a"
by (metis assms less_imp_le ln_gt_zero powr_mono2)
also have "… = (a powr a) * ((x powr (1 / a)) powr a)"
using assms powr_mult by auto
also have "(x powr (1 / a)) powr a = x powr ((1 / a) * a)"
by (rule powr_powr)
also have "… = x" using assms
by auto
finally show ?thesis .
qed
lemma tendsto_powr:
fixes a b :: real
assumes f: "(f ⤏ a) F"
and g: "(g ⤏ b) F"
and a: "a ≠ 0"
shows "((λx. f x powr g x) ⤏ a powr b) F"
unfolding powr_def
proof (rule filterlim_If)
from f show "((λx. 0) ⤏ (if a = 0 then 0 else exp (b * ln a))) (inf F (principal {x. f x = 0}))"
by simp (auto simp: filterlim_iff eventually_inf_principal elim: eventually_mono dest: t1_space_nhds)
from f g a show "((λx. exp (g x * ln (f x))) ⤏ (if a = 0 then 0 else exp (b * ln a)))
(inf F (principal {x. f x ≠ 0}))"
by (auto intro!: tendsto_intros intro: tendsto_mono inf_le1)
qed
lemma tendsto_powr'[tendsto_intros]:
fixes a :: real
assumes f: "(f ⤏ a) F"
and g: "(g ⤏ b) F"
and a: "a ≠ 0 ∨ (b > 0 ∧ eventually (λx. f x ≥ 0) F)"
shows "((λx. f x powr g x) ⤏ a powr b) F"
proof -
from a consider "a ≠ 0" | "a = 0" "b > 0" "eventually (λx. f x ≥ 0) F"
by auto
then show ?thesis
proof cases
case 1
with f g show ?thesis by (rule tendsto_powr)
next
case 2
have "((λx. if f x = 0 then 0 else exp (g x * ln (f x))) ⤏ 0) F"
proof (intro filterlim_If)
have "filterlim f (principal {0<..}) (inf F (principal {z. f z ≠ 0}))"
using ‹eventually (λx. f x ≥ 0) F›
by (auto simp: filterlim_iff eventually_inf_principal
eventually_principal elim: eventually_mono)
moreover have "filterlim f (nhds a) (inf F (principal {z. f z ≠ 0}))"
by (rule tendsto_mono[OF _ f]) simp_all
ultimately have f: "filterlim f (at_right 0) (inf F (principal {x. f x ≠ 0}))"
by (simp add: at_within_def filterlim_inf ‹a = 0›)
have g: "(g ⤏ b) (inf F (principal {z. f z ≠ 0}))"
by (rule tendsto_mono[OF _ g]) simp_all
show "((λx. exp (g x * ln (f x))) ⤏ 0) (inf F (principal {x. f x ≠ 0}))"
by (rule filterlim_compose[OF exp_at_bot] filterlim_tendsto_pos_mult_at_bot
filterlim_compose[OF ln_at_0] f g ‹b > 0›)+
qed simp_all
with ‹a = 0› show ?thesis
by (simp add: powr_def)
qed
qed
lemma continuous_powr:
assumes "continuous F f"
and "continuous F g"
and "f (Lim F (λx. x)) ≠ 0"
shows "continuous F (λx. (f x) powr (g x :: real))"
using assms unfolding continuous_def by (rule tendsto_powr)
lemma continuous_at_within_powr[continuous_intros]:
fixes f g :: "_ ⇒ real"
assumes "continuous (at a within s) f"
and "continuous (at a within s) g"
and "f a ≠ 0"
shows "continuous (at a within s) (λx. (f x) powr (g x))"
using assms unfolding continuous_within by (rule tendsto_powr)
lemma isCont_powr[continuous_intros, simp]:
fixes f g :: "_ ⇒ real"
assumes "isCont f a" "isCont g a" "f a ≠ 0"
shows "isCont (λx. (f x) powr g x) a"
using assms unfolding continuous_at by (rule tendsto_powr)
lemma continuous_on_powr[continuous_intros]:
fixes f g :: "_ ⇒ real"
assumes "continuous_on s f" "continuous_on s g" and "∀x∈s. f x ≠ 0"
shows "continuous_on s (λx. (f x) powr (g x))"
using assms unfolding continuous_on_def by (fast intro: tendsto_powr)
lemma tendsto_powr2:
fixes a :: real
assumes f: "(f ⤏ a) F"
and g: "(g ⤏ b) F"
and "∀⇩F x in F. 0 ≤ f x"
and b: "0 < b"
shows "((λx. f x powr g x) ⤏ a powr b) F"
using tendsto_powr'[of f a F g b] assms by auto
lemma has_derivative_powr[derivative_intros]:
assumes g[derivative_intros]: "(g has_derivative g') (at x within X)"
and f[derivative_intros]:"(f has_derivative f') (at x within X)"
assumes pos: "0 < g x" and "x ∈ X"
shows "((λx. g x powr f x::real) has_derivative (λh. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
proof -
have "∀⇩F x in at x within X. g x > 0"
by (rule order_tendstoD[OF _ pos])
(rule has_derivative_continuous[OF g, unfolded continuous_within])
then obtain d where "d > 0" and pos': "⋀x'. x' ∈ X ⟹ dist x' x < d ⟹ 0 < g x'"
using pos unfolding eventually_at by force
have "((λx. exp (f x * ln (g x))) has_derivative
(λh. (g x powr f x) * (f' h * ln (g x) + g' h * f x / g x))) (at x within X)"
using pos
by (auto intro!: derivative_eq_intros simp: field_split_simps powr_def)
then show ?thesis
by (rule has_derivative_transform_within[OF _ ‹d > 0› ‹x ∈ X›]) (auto simp: powr_def dest: pos')
qed
lemma DERIV_powr:
fixes r :: real
assumes g: "DERIV g x :> m"
and pos: "g x > 0"
and f: "DERIV f x :> r"
shows "DERIV (λx. g x powr f x) x :> (g x powr f x) * (r * ln (g x) + m * f x / g x)"
using assms
by (auto intro!: derivative_eq_intros ext simp: has_field_derivative_def algebra_simps)
lemma DERIV_fun_powr:
fixes r :: real
assumes g: "DERIV g x :> m"
and pos: "g x > 0"
shows "DERIV (λx. (g x) powr r) x :> r * (g x) powr (r - of_nat 1) * m"
using DERIV_powr[OF g pos DERIV_const, of r] pos
by (simp add: powr_diff field_simps)
lemma has_real_derivative_powr:
assumes "z > 0"
shows "((λz. z powr r) has_real_derivative r * z powr (r - 1)) (at z)"
proof (subst DERIV_cong_ev[OF refl _ refl])
from assms have "eventually (λz. z ≠ 0) (nhds z)"
by (intro t1_space_nhds) auto
then show "eventually (λz. z powr r = exp (r * ln z)) (nhds z)"
unfolding powr_def by eventually_elim simp
from assms show "((λz. exp (r * ln z)) has_real_derivative r * z powr (r - 1)) (at z)"
by (auto intro!: derivative_eq_intros simp: powr_def field_simps exp_diff)
qed
declare has_real_derivative_powr[THEN DERIV_chain2, derivative_intros]
lemma tendsto_zero_powrI:
assumes "(f ⤏ (0::real)) F" "(g ⤏ b) F" "∀⇩F x in F. 0 ≤ f x" "0 < b"
shows "((λx. f x powr g x) ⤏ 0) F"
using tendsto_powr2[OF assms] by simp
lemma continuous_on_powr':
fixes f g :: "_ ⇒ real"
assumes "continuous_on s f" "continuous_on s g"
and "∀x∈s. f x ≥ 0 ∧ (f x = 0 ⟶ g x > 0)"
shows "continuous_on s (λx. (f x) powr (g x))"
unfolding continuous_on_def
proof
fix x
assume x: "x ∈ s"
from assms x show "((λx. f x powr g x) ⤏ f x powr g x) (at x within s)"
proof (cases "f x = 0")
case True
from assms(3) have "eventually (λx. f x ≥ 0) (at x within s)"
by (auto simp: at_within_def eventually_inf_principal)
with True x assms show ?thesis
by (auto intro!: tendsto_zero_powrI[of f _ g "g x"] simp: continuous_on_def)
next
case False
with assms x show ?thesis
by (auto intro!: tendsto_powr' simp: continuous_on_def)
qed
qed
lemma tendsto_neg_powr:
assumes "s < 0"
and f: "LIM x F. f x :> at_top"
shows "((λx. f x powr s) ⤏ (0::real)) F"
proof -
have "((λx. exp (s * ln (f x))) ⤏ (0::real)) F" (is "?X")
by (auto intro!: filterlim_compose[OF exp_at_bot] filterlim_compose[OF ln_at_top]
filterlim_tendsto_neg_mult_at_bot assms)
also have "?X ⟷ ((λx. f x powr s) ⤏ (0::real)) F"
using f filterlim_at_top_dense[of f F]
by (intro filterlim_cong[OF refl refl]) (auto simp: neq_iff powr_def elim: eventually_mono)
finally show ?thesis .
qed
lemma tendsto_exp_limit_at_right: "((λy. (1 + x * y) powr (1 / y)) ⤏ exp x) (at_right 0)"
for x :: real
proof (cases "x = 0")
case True
then show ?thesis by simp
next
case False
have "((λy. ln (1 + x * y)::real) has_real_derivative 1 * x) (at 0)"
by (auto intro!: derivative_eq_intros)
then have "((λy. ln (1 + x * y) / y) ⤏ x) (at 0)"
by (auto simp: has_field_derivative_def field_has_derivative_at)
then have *: "((λy. exp (ln (1 + x * y) / y)) ⤏ exp x) (at 0)"
by (rule tendsto_intros)
then show ?thesis
proof (rule filterlim_mono_eventually)
show "eventually (λxa. exp (ln (1 + x * xa) / xa) = (1 + x * xa) powr (1 / xa)) (at_right 0)"
unfolding eventually_at_right[OF zero_less_one]
using False
by (intro exI[of _ "1 / ¦x¦"]) (auto simp: field_simps powr_def abs_if add_nonneg_eq_0_iff)
qed (simp_all add: at_eq_sup_left_right)
qed
lemma tendsto_exp_limit_at_top: "((λy. (1 + x / y) powr y) ⤏ exp x) at_top"
for x :: real
by (simp add: filterlim_at_top_to_right inverse_eq_divide tendsto_exp_limit_at_right)
lemma tendsto_exp_limit_sequentially: "(λn. (1 + x / n) ^ n) ⇢ exp x"
for x :: real
proof (rule filterlim_mono_eventually)
from reals_Archimedean2 [of "¦x¦"] obtain n :: nat where *: "real n > ¦x¦" ..
then have "eventually (λn :: nat. 0 < 1 + x / real n) at_top"
by (intro eventually_sequentiallyI [of n]) (auto simp: field_split_simps)
then show "eventually (λn. (1 + x / n) powr n = (1 + x / n) ^ n) at_top"
by (rule eventually_mono) (erule powr_realpow)
show "(λn. (1 + x / real n) powr real n) ⇢ exp x"
by (rule filterlim_compose [OF tendsto_exp_limit_at_top filterlim_real_sequentially])
qed auto
subsection ‹Sine and Cosine›
definition sin_coeff :: "nat ⇒ real"
where "sin_coeff = (λn. if even n then 0 else (- 1) ^ ((n - Suc 0) div 2) / (fact n))"
definition cos_coeff :: "nat ⇒ real"
where "cos_coeff = (λn. if even n then ((- 1) ^ (n div 2)) / (fact n) else 0)"
definition sin :: "'a ⇒ 'a::{real_normed_algebra_1,banach}"
where "sin = (λx. ∑n. sin_coeff n *⇩R x^n)"
definition cos :: "'a ⇒ 'a::{real_normed_algebra_1,banach}"
where "cos = (λx. ∑n. cos_coeff n *⇩R x^n)"
lemma sin_coeff_0 [simp]: "sin_coeff 0 = 0"
unfolding sin_coeff_def by simp
lemma cos_coeff_0 [simp]: "cos_coeff 0 = 1"
unfolding cos_coeff_def by simp
lemma sin_coeff_Suc: "sin_coeff (Suc n) = cos_coeff n / real (Suc n)"
unfolding cos_coeff_def sin_coeff_def
by (simp del: mult_Suc)
lemma cos_coeff_Suc: "cos_coeff (Suc n) = - sin_coeff n / real (Suc n)"
unfolding cos_coeff_def sin_coeff_def
by (simp del: mult_Suc) (auto elim: oddE)
lemma summable_norm_sin: "summable (λn. norm (sin_coeff n *⇩R x^n))"
for x :: "'a::{real_normed_algebra_1,banach}"
proof (rule summable_comparison_test [OF _ summable_norm_exp])
show "∃N. ∀n≥N. norm (norm (sin_coeff n *⇩R x ^ n)) ≤ norm (x ^ n /⇩R fact n)"
unfolding sin_coeff_def
by (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
qed
lemma summable_norm_cos: "summable (λn. norm (cos_coeff n *⇩R x^n))"
for x :: "'a::{real_normed_algebra_1,banach}"
proof (rule summable_comparison_test [OF _ summable_norm_exp])
show "∃N. ∀n≥N. norm (norm (cos_coeff n *⇩R x ^ n)) ≤ norm (x ^ n /⇩R fact n)"
unfolding cos_coeff_def
by (auto simp: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff)
qed
lemma sin_converges: "(λn. sin_coeff n *⇩R x^n) sums sin x"
unfolding sin_def
by (metis (full_types) summable_norm_cancel summable_norm_sin summable_sums)
lemma cos_converges: "(λn. cos_coeff n *⇩R x^n) sums cos x"
unfolding cos_def
by (metis (full_types) summable_norm_cancel summable_norm_cos summable_sums)
lemma sin_of_real: "sin (of_real x) = of_real (sin x)"
for x :: real
proof -
have "(λn. of_real (sin_coeff n *⇩R x^n)) = (λn. sin_coeff n *⇩R (of_real x)^n)"
proof
show "of_real (sin_coeff n *⇩R x^n) = sin_coeff n *⇩R of_real x^n" for n
by (simp add: scaleR_conv_of_real)
qed
also have "… sums (sin (of_real x))"
by (rule sin_converges)
finally have "(λn. of_real (sin_coeff n *⇩R x^n)) sums (sin (of_real x))" .
then show ?thesis
using sums_unique2 sums_of_real [OF sin_converges] by blast
qed
corollary sin_in_Reals [simp]: "z ∈ ℝ ⟹ sin z ∈ ℝ"
by (metis Reals_cases Reals_of_real sin_of_real)
lemma cos_of_real: "cos (of_real x) = of_real (cos x)"
for x :: real
proof -
have "(λn. of_real (cos_coeff n *⇩R x^n)) = (λn. cos_coeff n *⇩R (of_real x)^n)"
proof
show "of_real (cos_coeff n *⇩R x^n) = cos_coeff n *⇩R of_real x^n" for n
by (simp add: scaleR_conv_of_real)
qed
also have "… sums (cos (of_real x))"
by (rule cos_converges)
finally have "(λn. of_real (cos_coeff n *⇩R x^n)) sums (cos (of_real x))" .
then show ?thesis
using sums_unique2 sums_of_real [OF cos_converges]
by blast
qed
corollary cos_in_Reals [simp]: "z ∈ ℝ ⟹ cos z ∈ ℝ"
by (metis Reals_cases Reals_of_real cos_of_real)
lemma diffs_sin_coeff: "diffs sin_coeff = cos_coeff"
by (simp add: diffs_def sin_coeff_Suc del: of_nat_Suc)
lemma diffs_cos_coeff: "diffs cos_coeff = (λn. - sin_coeff n)"
by (simp add: diffs_def cos_coeff_Suc del: of_nat_Suc)
lemma sin_int_times_real: "sin (of_int m * of_real x) = of_real (sin (of_int m * x))"
by (metis sin_of_real of_real_mult of_real_of_int_eq)
lemma cos_int_times_real: "cos (of_int m * of_real x) = of_real (cos (of_int m * x))"
by (metis cos_of_real of_real_mult of_real_of_int_eq)
text ‹Now at last we can get the derivatives of exp, sin and cos.›
lemma DERIV_sin [simp]: "DERIV sin x :> cos x"
for x :: "'a::{real_normed_field,banach}"
unfolding sin_def cos_def scaleR_conv_of_real
apply (rule DERIV_cong)
apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
apply (simp_all add: norm_less_p1 diffs_of_real diffs_sin_coeff diffs_cos_coeff
summable_minus_iff scaleR_conv_of_real [symmetric]
summable_norm_sin [THEN summable_norm_cancel]
summable_norm_cos [THEN summable_norm_cancel])
done
declare DERIV_sin[THEN DERIV_chain2, derivative_intros]
and DERIV_sin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemmas has_derivative_sin[derivative_intros] = DERIV_sin[THEN DERIV_compose_FDERIV]
lemma DERIV_cos [simp]: "DERIV cos x :> - sin x"
for x :: "'a::{real_normed_field,banach}"
unfolding sin_def cos_def scaleR_conv_of_real
apply (rule DERIV_cong)
apply (rule termdiffs [where K="of_real (norm x) + 1 :: 'a"])
apply (simp_all add: norm_less_p1 diffs_of_real diffs_minus suminf_minus
diffs_sin_coeff diffs_cos_coeff
summable_minus_iff scaleR_conv_of_real [symmetric]
summable_norm_sin [THEN summable_norm_cancel]
summable_norm_cos [THEN summable_norm_cancel])
done
declare DERIV_cos[THEN DERIV_chain2, derivative_intros]
and DERIV_cos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemmas has_derivative_cos[derivative_intros] = DERIV_cos[THEN DERIV_compose_FDERIV]
lemma isCont_sin: "isCont sin x"
for x :: "'a::{real_normed_field,banach}"
by (rule DERIV_sin [THEN DERIV_isCont])
lemma continuous_on_sin_real: "continuous_on {a..b} sin" for a::real
using continuous_at_imp_continuous_on isCont_sin by blast
lemma isCont_cos: "isCont cos x"
for x :: "'a::{real_normed_field,banach}"
by (rule DERIV_cos [THEN DERIV_isCont])
lemma continuous_on_cos_real: "continuous_on {a..b} cos" for a::real
using continuous_at_imp_continuous_on isCont_cos by blast
context
fixes f :: "'a::t2_space ⇒ 'b::{real_normed_field,banach}"
begin
lemma isCont_sin' [simp]: "isCont f a ⟹ isCont (λx. sin (f x)) a"
by (rule isCont_o2 [OF _ isCont_sin])
lemma isCont_cos' [simp]: "isCont f a ⟹ isCont (λx. cos (f x)) a"
by (rule isCont_o2 [OF _ isCont_cos])
lemma tendsto_sin [tendsto_intros]: "(f ⤏ a) F ⟹ ((λx. sin (f x)) ⤏ sin a) F"
by (rule isCont_tendsto_compose [OF isCont_sin])
lemma tendsto_cos [tendsto_intros]: "(f ⤏ a) F ⟹ ((λx. cos (f x)) ⤏ cos a) F"
by (rule isCont_tendsto_compose [OF isCont_cos])
lemma continuous_sin [continuous_intros]: "continuous F f ⟹ continuous F (λx. sin (f x))"
unfolding continuous_def by (rule tendsto_sin)
lemma continuous_on_sin [continuous_intros]: "continuous_on s f ⟹ continuous_on s (λx. sin (f x))"
unfolding continuous_on_def by (auto intro: tendsto_sin)
lemma continuous_cos [continuous_intros]: "continuous F f ⟹ continuous F (λx. cos (f x))"
unfolding continuous_def by (rule tendsto_cos)
lemma continuous_on_cos [continuous_intros]: "continuous_on s f ⟹ continuous_on s (λx. cos (f x))"
unfolding continuous_on_def by (auto intro: tendsto_cos)
end
lemma continuous_within_sin: "continuous (at z within s) sin"
for z :: "'a::{real_normed_field,banach}"
by (simp add: continuous_within tendsto_sin)
lemma continuous_within_cos: "continuous (at z within s) cos"
for z :: "'a::{real_normed_field,banach}"
by (simp add: continuous_within tendsto_cos)
subsection ‹Properties of Sine and Cosine›
lemma sin_zero [simp]: "sin 0 = 0"
by (simp add: sin_def sin_coeff_def scaleR_conv_of_real)
lemma cos_zero [simp]: "cos 0 = 1"
by (simp add: cos_def cos_coeff_def scaleR_conv_of_real)
lemma DERIV_fun_sin: "DERIV g x :> m ⟹ DERIV (λx. sin (g x)) x :> cos (g x) * m"
by (fact derivative_intros)
lemma DERIV_fun_cos: "DERIV g x :> m ⟹ DERIV (λx. cos(g x)) x :> - sin (g x) * m"
by (fact derivative_intros)
subsection ‹Deriving the Addition Formulas›
text ‹The product of two cosine series.›
lemma cos_x_cos_y:
fixes x :: "'a::{real_normed_field,banach}"
shows
"(λp. ∑n≤p.
if even p ∧ even n
then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0)
sums (cos x * cos y)"
proof -
have "(cos_coeff n * cos_coeff (p - n)) *⇩R (x^n * y^(p - n)) =
(if even p ∧ even n then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p - n)
else 0)"
if "n ≤ p" for n p :: nat
proof -
from that have *: "even n ⟹ even p ⟹
(-1) ^ (n div 2) * (-1) ^ ((p - n) div 2) = (-1 :: real) ^ (p div 2)"
by (metis div_add power_add le_add_diff_inverse odd_add)
with that show ?thesis
by (auto simp: algebra_simps cos_coeff_def binomial_fact)
qed
then have "(λp. ∑n≤p. if even p ∧ even n
then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0) =
(λp. ∑n≤p. (cos_coeff n * cos_coeff (p - n)) *⇩R (x^n * y^(p-n)))"
by simp
also have "… = (λp. ∑n≤p. (cos_coeff n *⇩R x^n) * (cos_coeff (p - n) *⇩R y^(p-n)))"
by (simp add: algebra_simps)
also have "… sums (cos x * cos y)"
using summable_norm_cos
by (auto simp: cos_def scaleR_conv_of_real intro!: Cauchy_product_sums)
finally show ?thesis .
qed
text ‹The product of two sine series.›
lemma sin_x_sin_y:
fixes x :: "'a::{real_normed_field,banach}"
shows
"(λp. ∑n≤p.
if even p ∧ odd n
then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n)
else 0)
sums (sin x * sin y)"
proof -
have "(sin_coeff n * sin_coeff (p - n)) *⇩R (x^n * y^(p-n)) =
(if even p ∧ odd n
then -((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n)
else 0)"
if "n ≤ p" for n p :: nat
proof -
have "(-1) ^ ((n - Suc 0) div 2) * (-1) ^ ((p - Suc n) div 2) = - ((-1 :: real) ^ (p div 2))"
if np: "odd n" "even p"
proof -
have "p > 0"
using ‹n ≤ p› neq0_conv that(1) by blast
then have §: "(- 1::real) ^ (p div 2 - Suc 0) = - ((- 1) ^ (p div 2))"
using ‹even p› by (auto simp add: dvd_def power_eq_if)
from ‹n ≤ p› np have *: "n - Suc 0 + (p - Suc n) = p - Suc (Suc 0)" "Suc (Suc 0) ≤ p"
by arith+
have "(p - Suc (Suc 0)) div 2 = p div 2 - Suc 0"
by simp
with ‹n ≤ p› np § * show ?thesis
by (simp add: flip: div_add power_add)
qed
then show ?thesis
using ‹n≤p› by (auto simp: algebra_simps sin_coeff_def binomial_fact)
qed
then have "(λp. ∑n≤p. if even p ∧ odd n
then - ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0) =
(λp. ∑n≤p. (sin_coeff n * sin_coeff (p - n)) *⇩R (x^n * y^(p-n)))"
by simp
also have "… = (λp. ∑n≤p. (sin_coeff n *⇩R x^n) * (sin_coeff (p - n) *⇩R y^(p-n)))"
by (simp add: algebra_simps)
also have "… sums (sin x * sin y)"
using summable_norm_sin
by (auto simp: sin_def scaleR_conv_of_real intro!: Cauchy_product_sums)
finally show ?thesis .
qed
lemma sums_cos_x_plus_y:
fixes x :: "'a::{real_normed_field,banach}"
shows
"(λp. ∑n≤p.
if even p
then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n)
else 0)
sums cos (x + y)"
proof -
have
"(∑n≤p.
if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n)
else 0) = cos_coeff p *⇩R ((x + y) ^ p)"
for p :: nat
proof -
have
"(∑n≤p. if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0) =
(if even p then ∑n≤p. ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0)"
by simp
also have "… =
(if even p
then of_real ((-1) ^ (p div 2) / (fact p)) * (∑n≤p. (p choose n) *⇩R (x^n) * y^(p-n))
else 0)"
by (auto simp: sum_distrib_left field_simps scaleR_conv_of_real nonzero_of_real_divide)
also have "… = cos_coeff p *⇩R ((x + y) ^ p)"
by (simp add: cos_coeff_def binomial_ring [of x y] scaleR_conv_of_real atLeast0AtMost)
finally show ?thesis .
qed
then have
"(λp. ∑n≤p.
if even p
then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n)
else 0) = (λp. cos_coeff p *⇩R ((x+y)^p))"
by simp
also have "… sums cos (x + y)"
by (rule cos_converges)
finally show ?thesis .
qed
theorem cos_add:
fixes x :: "'a::{real_normed_field,banach}"
shows "cos (x + y) = cos x * cos y - sin x * sin y"
proof -
have
"(if even p ∧ even n
then ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0) -
(if even p ∧ odd n
then - ((- 1) ^ (p div 2) * int (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0) =
(if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0)"
if "n ≤ p" for n p :: nat
by simp
then have
"(λp. ∑n≤p. (if even p then ((-1) ^ (p div 2) * (p choose n) / (fact p)) *⇩R (x^n) * y^(p-n) else 0))
sums (cos x * cos y - sin x * sin y)"
using sums_diff [OF cos_x_cos_y [of x y] sin_x_sin_y [of x y]]
by (simp add: sum_subtractf [symmetric])
then show ?thesis
by (blast intro: sums_cos_x_plus_y sums_unique2)
qed
lemma sin_minus_converges: "(λn. - (sin_coeff n *⇩R (-x)^n)) sums sin x"
proof -
have [simp]: "⋀n. - (sin_coeff n *⇩R (-x)^n) = (sin_coeff n *⇩R x^n)"
by (auto simp: sin_coeff_def elim!: oddE)
show ?thesis
by (simp add: sin_def summable_norm_sin [THEN summable_norm_cancel, THEN summable_sums])
qed
lemma sin_minus [simp]: "sin (- x) = - sin x"
for x :: "'a::{real_normed_algebra_1,banach}"
using sin_minus_converges [of x]
by (auto simp: sin_def summable_norm_sin [THEN summable_norm_cancel]
suminf_minus sums_iff equation_minus_iff)
lemma cos_minus_converges: "(λn. (cos_coeff n *⇩R (-x)^n)) sums cos x"
proof -
have [simp]: "⋀n. (cos_coeff n *⇩R (-x)^n) = (cos_coeff n *⇩R x^n)"
by (auto simp: Transcendental.cos_coeff_def elim!: evenE)
show ?thesis
by (simp add: cos_def summable_norm_cos [THEN summable_norm_cancel, THEN summable_sums])
qed
lemma cos_minus [simp]: "cos (-x) = cos x"
for x :: "'a::{real_normed_algebra_1,banach}"
using cos_minus_converges [of x] by (metis cos_def sums_unique)
lemma cos_abs_real [simp]: "cos ¦x :: real¦ = cos x"
by (simp add: abs_if)
lemma sin_cos_squared_add [simp]: "(sin x)⇧2 + (cos x)⇧2 = 1"
for x :: "'a::{real_normed_field,banach}"
using cos_add [of x "-x"]
by (simp add: power2_eq_square algebra_simps)
lemma sin_cos_squared_add2 [simp]: "(cos x)⇧2 + (sin x)⇧2 = 1"
for x :: "'a::{real_normed_field,banach}"
by (subst add.commute, rule sin_cos_squared_add)
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1"
for x :: "'a::{real_normed_field,banach}"
using sin_cos_squared_add2 [unfolded power2_eq_square] .
lemma sin_squared_eq: "(sin x)⇧2 = 1 - (cos x)⇧2"
for x :: "'a::{real_normed_field,banach}"
unfolding eq_diff_eq by (rule sin_cos_squared_add)
lemma cos_squared_eq: "(cos x)⇧2 = 1 - (sin x)⇧2"
for x :: "'a::{real_normed_field,banach}"
unfolding eq_diff_eq by (rule sin_cos_squared_add2)
lemma abs_sin_le_one [simp]: "¦sin x¦ ≤ 1"
for x :: real
by (rule power2_le_imp_le) (simp_all add: sin_squared_eq)
lemma sin_ge_minus_one [simp]: "- 1 ≤ sin x"
for x :: real
using abs_sin_le_one [of x] by (simp add: abs_le_iff)
lemma sin_le_one [simp]: "sin x ≤ 1"
for x :: real
using abs_sin_le_one [of x] by (simp add: abs_le_iff)
lemma abs_cos_le_one [simp]: "¦cos x¦ ≤ 1"
for x :: real
by (rule power2_le_imp_le) (simp_all add: cos_squared_eq)
lemma cos_ge_minus_one [simp]: "- 1 ≤ cos x"
for x :: real
using abs_cos_le_one [of x] by (simp add: abs_le_iff)
lemma cos_le_one [simp]: "cos x ≤ 1"
for x :: real
using abs_cos_le_one [of x] by (simp add: abs_le_iff)
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y"
for x :: "'a::{real_normed_field,banach}"
using cos_add [of x "- y"] by simp
lemma cos_double: "cos(2*x) = (cos x)⇧2 - (sin x)⇧2"
for x :: "'a::{real_normed_field,banach}"
using cos_add [where x=x and y=x] by (simp add: power2_eq_square)
lemma sin_cos_le1: "¦sin x * sin y + cos x * cos y¦ ≤ 1"
for x :: real
using cos_diff [of x y] by (metis abs_cos_le_one add.commute)
lemma DERIV_fun_pow: "DERIV g x :> m ⟹ DERIV (λx. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m"
by (auto intro!: derivative_eq_intros simp:)
lemma DERIV_fun_exp: "DERIV g x :> m ⟹ DERIV (λx. exp (g x)) x :> exp (g x) * m"
by (auto intro!: derivative_intros)
subsection ‹The Constant Pi›
definition pi :: real
where "pi = 2 * (THE x. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0)"
text ‹Show that there's a least positive \<^term>‹x› with \<^term>‹cos x = 0›;
hence define pi.›
lemma sin_paired: "(λn. (- 1) ^ n / (fact (2 * n + 1)) * x ^ (2 * n + 1)) sums sin x"
for x :: real
proof -
have "(λn. ∑k = n*2..<n * 2 + 2. sin_coeff k * x ^ k) sums sin x"
by (rule sums_group) (use sin_converges [of x, unfolded scaleR_conv_of_real] in auto)
then show ?thesis
by (simp add: sin_coeff_def ac_simps)
qed
lemma sin_gt_zero_02:
fixes x :: real
assumes "0 < x" and "x < 2"
shows "0 < sin x"
proof -
let ?f = "λn::nat. ∑k = n*2..<n*2+2. (- 1) ^ k / (fact (2*k+1)) * x^(2*k+1)"
have pos: "∀n. 0 < ?f n"
proof
fix n :: nat
let ?k2 = "real (Suc (Suc (4 * n)))"
let ?k3 = "real (Suc (Suc (Suc (4 * n))))"
have "x * x < ?k2 * ?k3"
using assms by (intro mult_strict_mono', simp_all)
then have "x * x * x * x ^ (n * 4) < ?k2 * ?k3 * x * x ^ (n * 4)"
by (intro mult_strict_right_mono zero_less_power ‹0 < x›)
then show "0 < ?f n"
by (simp add: ac_simps divide_less_eq)
qed
have sums: "?f sums sin x"
by (rule sin_paired [THEN sums_group]) simp
show "0 < sin x"
unfolding sums_unique [OF sums] using sums_summable [OF sums] pos by (simp add: suminf_pos)
qed
lemma cos_double_less_one: "0 < x ⟹ x < 2 ⟹ cos (2 * x) < 1"
for x :: real
using sin_gt_zero_02 [where x = x] by (auto simp: cos_squared_eq cos_double)
lemma cos_paired: "(λn. (- 1) ^ n / (fact (2 * n)) * x ^ (2 * n)) sums cos x"
for x :: real
proof -
have "(λn. ∑k = n * 2..<n * 2 + 2. cos_coeff k * x ^ k) sums cos x"
by (rule sums_group) (use cos_converges [of x, unfolded scaleR_conv_of_real] in auto)
then show ?thesis
by (simp add: cos_coeff_def ac_simps)
qed
lemma sum_pos_lt_pair:
fixes f :: "nat ⇒ real"
assumes f: "summable f" and fplus: "⋀d. 0 < f (k + (Suc(Suc 0) * d)) + f (k + ((Suc (Suc 0) * d) + 1))"
shows "sum f {..<k} < suminf f"
proof -
have "(λn. ∑n = n * Suc (Suc 0)..<n * Suc (Suc 0) + Suc (Suc 0). f (n + k))
sums (∑n. f (n + k))"
proof (rule sums_group)
show "(λn. f (n + k)) sums (∑n. f (n + k))"
by (simp add: f summable_iff_shift summable_sums)
qed auto
with fplus have "0 < (∑n. f (n + k))"
apply (simp add: add.commute)
apply (metis (no_types, lifting) suminf_pos summable_def sums_unique)
done
then show ?thesis
by (simp add: f suminf_minus_initial_segment)
qed
lemma cos_two_less_zero [simp]: "cos 2 < (0::real)"
proof -
note fact_Suc [simp del]
from sums_minus [OF cos_paired]
have *: "(λn. - ((- 1) ^ n * 2 ^ (2 * n) / fact (2 * n))) sums - cos (2::real)"
by simp
then have sm: "summable (λn. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
by (rule sums_summable)
have "0 < (∑n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
by (simp add: fact_num_eq_if power_eq_if)
moreover have "(∑n<Suc (Suc (Suc 0)). - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n)))) <
(∑n. - ((- 1) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
proof -
{
fix d
let ?six4d = "Suc (Suc (Suc (Suc (Suc (Suc (4 * d))))))"
have "(4::real) * (fact (?six4d)) < (Suc (Suc (?six4d)) * fact (Suc (?six4d)))"
unfolding of_nat_mult by (rule mult_strict_mono) (simp_all add: fact_less_mono)
then have "(4::real) * (fact (?six4d)) < (fact (Suc (Suc (?six4d))))"
by (simp only: fact_Suc [of "Suc (?six4d)"] of_nat_mult of_nat_fact)
then have "(4::real) * inverse (fact (Suc (Suc (?six4d)))) < inverse (fact (?six4d))"
by (simp add: inverse_eq_divide less_divide_eq)
}
then show ?thesis
by (force intro!: sum_pos_lt_pair [OF sm] simp add: divide_inverse algebra_simps)
qed
ultimately have "0 < (∑n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
by (rule order_less_trans)
moreover from * have "- cos 2 = (∑n. - ((- 1::real) ^ n * 2 ^ (2 * n) / (fact (2 * n))))"
by (rule sums_unique)
ultimately have "(0::real) < - cos 2" by simp
then show ?thesis by simp
qed
lemmas cos_two_neq_zero [simp] = cos_two_less_zero [THEN less_imp_neq]
lemmas cos_two_le_zero [simp] = cos_two_less_zero [THEN order_less_imp_le]
lemma cos_is_zero: "∃!x::real. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0"
proof (rule ex_ex1I)
show "∃x::real. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0"
by (rule IVT2) simp_all
next
fix a b :: real
assume ab: "0 ≤ a ∧ a ≤ 2 ∧ cos a = 0" "0 ≤ b ∧ b ≤ 2 ∧ cos b = 0"
have cosd: "⋀x::real. cos differentiable (at x)"
unfolding real_differentiable_def by (auto intro: DERIV_cos)
show "a = b"
proof (cases a b rule: linorder_cases)
case less
then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
using Rolle by (metis cosd continuous_on_cos_real ab)
then have "sin z = 0"
using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
then show ?thesis
by (metis ‹a < z› ‹z < b› ab order_less_le_trans less_le sin_gt_zero_02)
next
case greater
then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
using Rolle by (metis cosd continuous_on_cos_real ab)
then have "sin z = 0"
using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
then show ?thesis
by (metis ‹b < z› ‹z < a› ab order_less_le_trans less_le sin_gt_zero_02)
qed auto
qed
lemma pi_half: "pi/2 = (THE x. 0 ≤ x ∧ x ≤ 2 ∧ cos x = 0)"
by (simp add: pi_def)
lemma cos_pi_half [simp]: "cos (pi/2) = 0"
by (simp add: pi_half cos_is_zero [THEN theI'])
lemma cos_of_real_pi_half [simp]: "cos ((of_real pi/2) :: 'a) = 0"
if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
by (metis cos_pi_half cos_of_real eq_numeral_simps(4)
nonzero_of_real_divide of_real_0 of_real_numeral)
lemma pi_half_gt_zero [simp]: "0 < pi/2"
proof -
have "0 ≤ pi/2"
by (simp add: pi_half cos_is_zero [THEN theI'])
then show ?thesis
by (metis cos_pi_half cos_zero less_eq_real_def one_neq_zero)
qed
lemmas pi_half_neq_zero [simp] = pi_half_gt_zero [THEN less_imp_neq, symmetric]
lemmas pi_half_ge_zero [simp] = pi_half_gt_zero [THEN order_less_imp_le]
lemma pi_half_less_two [simp]: "pi/2 < 2"
proof -
have "pi/2 ≤ 2"
by (simp add: pi_half cos_is_zero [THEN theI'])
then show ?thesis
by (metis cos_pi_half cos_two_neq_zero le_less)
qed
lemmas pi_half_neq_two [simp] = pi_half_less_two [THEN less_imp_neq]
lemmas pi_half_le_two [simp] = pi_half_less_two [THEN order_less_imp_le]
lemma pi_gt_zero [simp]: "0 < pi"
using pi_half_gt_zero by simp
lemma pi_ge_zero [simp]: "0 ≤ pi"
by (rule pi_gt_zero [THEN order_less_imp_le])
lemma pi_neq_zero [simp]: "pi ≠ 0"
by (rule pi_gt_zero [THEN less_imp_neq, symmetric])
lemma pi_not_less_zero [simp]: "¬ pi < 0"
by (simp add: linorder_not_less)
lemma minus_pi_half_less_zero: "-(pi/2) < 0"
by simp
lemma m2pi_less_pi: "- (2*pi) < pi"
by simp
lemma sin_pi_half [simp]: "sin(pi/2) = 1"
using sin_cos_squared_add2 [where x = "pi/2"]
using sin_gt_zero_02 [OF pi_half_gt_zero pi_half_less_two]
by (simp add: power2_eq_1_iff)
lemma sin_of_real_pi_half [simp]: "sin ((of_real pi/2) :: 'a) = 1"
if "SORT_CONSTRAINT('a::{real_field,banach,real_normed_algebra_1})"
using sin_pi_half
by (metis sin_pi_half eq_numeral_simps(4) nonzero_of_real_divide of_real_1 of_real_numeral sin_of_real)
lemma sin_cos_eq: "sin x = cos (of_real pi/2 - x)"
for x :: "'a::{real_normed_field,banach}"
by (simp add: cos_diff)
lemma minus_sin_cos_eq: "- sin x = cos (x + of_real pi/2)"
for x :: "'a::{real_normed_field,banach}"
by (simp add: cos_add nonzero_of_real_divide)
lemma cos_sin_eq: "cos x = sin (of_real pi/2 - x)"
for x :: "'a::{real_normed_field,banach}"
using sin_cos_eq [of "of_real pi/2 - x"] by simp
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y"
for x :: "'a::{real_normed_field,banach}"
using cos_add [of "of_real pi/2 - x" "-y"]
by (simp add: cos_sin_eq) (simp add: sin_cos_eq)
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y"
for x :: "'a::{real_normed_field,banach}"
using sin_add [of x "- y"] by simp
lemma sin_double: "sin(2 * x) = 2 * sin x * cos x"
for x :: "'a::{real_normed_field,banach}"
using sin_add [where x=x and y=x] by simp
lemma cos_of_real_pi [simp]: "cos (of_real pi) = -1"
using cos_add [where x = "pi/2" and y = "pi/2"]
by (simp add: cos_of_real)
lemma sin_of_real_pi [simp]: "sin (of_real pi) = 0"
using sin_add [where x = "pi/2" and y = "pi/2"]
by (simp add: sin_of_real)
lemma cos_pi [simp]: "cos pi = -1"
using cos_add [where x = "pi/2" and y = "pi/2"] by simp
lemma sin_pi [simp]: "sin pi = 0"
using sin_add [where x = "pi/2" and y = "pi/2"] by simp
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x"
by (simp add: sin_add)
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x"
by (simp add: sin_add)
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x"
by (simp add: cos_add)
lemma cos_periodic_pi2 [simp]: "cos (pi + x) = - cos x"
by (simp add: cos_add)
lemma sin_periodic [simp]: "sin (x + 2 * pi) = sin x"
by (simp add: sin_add sin_double cos_double)
lemma cos_periodic [simp]: "cos (x + 2 * pi) = cos x"
by (simp add: cos_add sin_double cos_double)
lemma cos_npi [simp]: "cos (real n * pi) = (- 1) ^ n"
by (induct n) (auto simp: distrib_right)
lemma cos_npi2 [simp]: "cos (pi * real n) = (- 1) ^ n"
by (metis cos_npi mult.commute)
lemma sin_npi [simp]: "sin (real n * pi) = 0"
for n :: nat
by (induct n) (auto simp: distrib_right)
lemma sin_npi2 [simp]: "sin (pi * real n) = 0"
for n :: nat
by (simp add: mult.commute [of pi])
lemma cos_two_pi [simp]: "cos (2 * pi) = 1"
by (simp add: cos_double)
lemma sin_two_pi [simp]: "sin (2 * pi) = 0"
by (simp add: sin_double)
context
fixes w :: "'a::{real_normed_field,banach}"
begin
lemma sin_times_sin: "sin w * sin z = (cos (w - z) - cos (w + z)) / 2"
by (simp add: cos_diff cos_add)
lemma sin_times_cos: "sin w * cos z = (sin (w + z) + sin (w - z)) / 2"
by (simp add: sin_diff sin_add)
lemma cos_times_sin: "cos w * sin z = (sin (w + z) - sin (w - z)) / 2"
by (simp add: sin_diff sin_add)
lemma cos_times_cos: "cos w * cos z = (cos (w - z) + cos (w + z)) / 2"
by (simp add: cos_diff cos_add)
lemma cos_double_cos: "cos (2 * w) = 2 * cos w ^ 2 - 1"
by (simp add: cos_double sin_squared_eq)
lemma cos_double_sin: "cos (2 * w) = 1 - 2 * sin w ^ 2"
by (simp add: cos_double sin_squared_eq)
end
lemma sin_plus_sin: "sin w + sin z = 2 * sin ((w + z) / 2) * cos ((w - z) / 2)"
for w :: "'a::{real_normed_field,banach}"
apply (simp add: mult.assoc sin_times_cos)
apply (simp add: field_simps)
done
lemma sin_diff_sin: "sin w - sin z = 2 * sin ((w - z) / 2) * cos ((w + z) / 2)"
for w :: "'a::{real_normed_field,banach}"
apply (simp add: mult.assoc sin_times_cos)
apply (simp add: field_simps)
done
lemma cos_plus_cos: "cos w + cos z = 2 * cos ((w + z) / 2) * cos ((w - z) / 2)"
for w :: "'a::{real_normed_field,banach,field}"
apply (simp add: mult.assoc cos_times_cos)
apply (simp add: field_simps)
done
lemma cos_diff_cos: "cos w - cos z = 2 * sin ((w + z) / 2) * sin ((z - w) / 2)"
for w :: "'a::{real_normed_field,banach,field}"
apply (simp add: mult.assoc sin_times_sin)
apply (simp add: field_simps)
done
lemma sin_pi_minus [simp]: "sin (pi - x) = sin x"
by (metis sin_minus sin_periodic_pi minus_minus uminus_add_conv_diff)
lemma cos_pi_minus [simp]: "cos (pi - x) = - (cos x)"
by (metis cos_minus cos_periodic_pi uminus_add_conv_diff)
lemma sin_minus_pi [simp]: "sin (x - pi) = - (sin x)"
by (simp add: sin_diff)
lemma cos_minus_pi [simp]: "cos (x - pi) = - (cos x)"
by (simp add: cos_diff)
lemma sin_2pi_minus [simp]: "sin (2 * pi - x) = - (sin x)"
by (metis sin_periodic_pi2 add_diff_eq mult_2 sin_pi_minus)
lemma cos_2pi_minus [simp]: "cos (2 * pi - x) = cos x"
by (metis (no_types, opaque_lifting) cos_add cos_minus cos_two_pi sin_minus sin_two_pi
diff_0_right minus_diff_eq mult_1 mult_zero_left uminus_add_conv_diff)
lemma sin_gt_zero2: "0 < x ⟹ x < pi/2 ⟹ 0 < sin x"
by (metis sin_gt_zero_02 order_less_trans pi_half_less_two)
lemma sin_less_zero:
assumes "- pi/2 < x" and "x < 0"
shows "sin x < 0"
proof -
have "0 < sin (- x)"
using assms by (simp only: sin_gt_zero2)
then show ?thesis by simp
qed
lemma pi_less_4: "pi < 4"
using pi_half_less_two by auto
lemma cos_gt_zero: "0 < x ⟹ x < pi/2 ⟹ 0 < cos x"
by (simp add: cos_sin_eq sin_gt_zero2)
lemma cos_gt_zero_pi: "-(pi/2) < x ⟹ x < pi/2 ⟹ 0 < cos x"
using cos_gt_zero [of x] cos_gt_zero [of "-x"]
by (cases rule: linorder_cases [of x 0]) auto
lemma cos_ge_zero: "-(pi/2) ≤ x ⟹ x ≤ pi/2 ⟹ 0 ≤ cos x"
by (auto simp: order_le_less cos_gt_zero_pi)
(metis cos_pi_half eq_divide_eq eq_numeral_simps(4))
lemma sin_gt_zero: "0 < x ⟹ x < pi ⟹ 0 < sin x"
by (simp add: sin_cos_eq cos_gt_zero_pi)
lemma sin_lt_zero: "pi < x ⟹ x < 2 * pi ⟹ sin x < 0"
using sin_gt_zero [of "x - pi"]
by (simp add: sin_diff)
lemma pi_ge_two: "2 ≤ pi"
proof (rule ccontr)
assume "¬ ?thesis"
then have "pi < 2" by auto
have "∃y > pi. y < 2 ∧ y < 2 * pi"
proof (cases "2 < 2 * pi")
case True
with dense[OF ‹pi < 2›] show ?thesis by auto
next
case False
have "pi < 2 * pi" by auto
from dense[OF this] and False show ?thesis by auto
qed
then obtain y where "pi < y" and "y < 2" and "y < 2 * pi"
by blast
then have "0 < sin y"
using sin_gt_zero_02 by auto
moreover have "sin y < 0"
using sin_gt_zero[of "y - pi"] ‹pi < y› and ‹y < 2 * pi› sin_periodic_pi[of "y - pi"]
by auto
ultimately show False by auto
qed
lemma sin_ge_zero: "0 ≤ x ⟹ x ≤ pi ⟹ 0 ≤ sin x"
by (auto simp: order_le_less sin_gt_zero)
lemma sin_le_zero: "pi ≤ x ⟹ x < 2 * pi ⟹ sin x ≤ 0"
using sin_ge_zero [of "x - pi"] by (simp add: sin_diff)
lemma sin_pi_divide_n_ge_0 [simp]:
assumes "n ≠ 0"
shows "0 ≤ sin (pi/real n)"
by (rule sin_ge_zero) (use assms in ‹simp_all add: field_split_simps›)
lemma sin_pi_divide_n_gt_0:
assumes "2 ≤ n"
shows "0 < sin (pi/real n)"
by (rule sin_gt_zero) (use assms in ‹simp_all add: field_split_simps›)
text‹Proof resembles that of ‹cos_is_zero› but with \<^term>‹pi› for the upper bound›
lemma cos_total:
assumes y: "-1 ≤ y" "y ≤ 1"
shows "∃!x. 0 ≤ x ∧ x ≤ pi ∧ cos x = y"
proof (rule ex_ex1I)
show "∃x::real. 0 ≤ x ∧ x ≤ pi ∧ cos x = y"
by (rule IVT2) (simp_all add: y)
next
fix a b :: real
assume ab: "0 ≤ a ∧ a ≤ pi ∧ cos a = y" "0 ≤ b ∧ b ≤ pi ∧ cos b = y"
have cosd: "⋀x::real. cos differentiable (at x)"
unfolding real_differentiable_def by (auto intro: DERIV_cos)
show "a = b"
proof (cases a b rule: linorder_cases)
case less
then obtain z where "a < z" "z < b" "(cos has_real_derivative 0) (at z)"
using Rolle by (metis cosd continuous_on_cos_real ab)
then have "sin z = 0"
using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
then show ?thesis
by (metis ‹a < z› ‹z < b› ab order_less_le_trans less_le sin_gt_zero)
next
case greater
then obtain z where "b < z" "z < a" "(cos has_real_derivative 0) (at z)"
using Rolle by (metis cosd continuous_on_cos_real ab)
then have "sin z = 0"
using DERIV_cos DERIV_unique neg_equal_0_iff_equal by blast
then show ?thesis
by (metis ‹b < z› ‹z < a› ab order_less_le_trans less_le sin_gt_zero)
qed auto
qed
lemma sin_total:
assumes y: "-1 ≤ y" "y ≤ 1"
shows "∃!x. - (pi/2) ≤ x ∧ x ≤ pi/2 ∧ sin x = y"
proof -
from cos_total [OF y]
obtain x where x: "0 ≤ x" "x ≤ pi" "cos x = y"
and uniq: "⋀x'. 0 ≤ x' ⟹ x' ≤ pi ⟹ cos x' = y ⟹ x' = x "
by blast
show ?thesis
unfolding sin_cos_eq
proof (rule ex1I [where a="pi/2 - x"])
show "- (pi/2) ≤ z ∧ z ≤ pi/2 ∧ cos (of_real pi/2 - z) = y ⟹
z = pi/2 - x" for z
using uniq [of "pi/2 -z"] by auto
qed (use x in auto)
qed
lemma cos_zero_lemma:
assumes "0 ≤ x" "cos x = 0"
shows "∃n. odd n ∧ x = of_nat n * (pi/2)"
proof -
have xle: "x < (1 + real_of_int ⌊x/pi⌋) * pi"
using floor_correct [of "x/pi"]
by (simp add: add.commute divide_less_eq)
obtain n where "real n * pi ≤ x" "x < real (Suc n) * pi"
proof
show "real (nat ⌊x / pi⌋) * pi ≤ x"
using assms floor_divide_lower [of pi x] by auto
show "x < real (Suc (nat ⌊x / pi⌋)) * pi"
using assms floor_divide_upper [of pi x] by (simp add: xle)
qed
then have x: "0 ≤ x - n * pi" "(x - n * pi) ≤ pi" "cos (x - n * pi) = 0"
by (auto simp: algebra_simps cos_diff assms)
then have "∃!x. 0 ≤ x ∧ x ≤ pi ∧ cos x = 0"
by (auto simp: intro!: cos_total)
then obtain θ where θ: "0 ≤ θ" "θ ≤ pi" "cos θ = 0"
and uniq: "⋀φ. 0 ≤ φ ⟹ φ ≤ pi ⟹ cos φ = 0 ⟹ φ = θ"
by blast
then have "x - real n * pi = θ"
using x by blast
moreover have "pi/2 = θ"
using pi_half_ge_zero uniq by fastforce
ultimately show ?thesis
by (rule_tac x = "Suc (2 * n)" in exI) (simp add: algebra_simps)
qed
lemma sin_zero_lemma:
assumes "0 ≤ x" "sin x = 0"
shows "∃n::nat. even n ∧ x = real n * (pi/2)"
proof -
obtain n where "odd n" and n: "x + pi/2 = of_nat n * (pi/2)" "n > 0"
using cos_zero_lemma [of "x + pi/2"] assms by (auto simp add: cos_add)
then have "x = real (n - 1) * (pi/2)"
by (simp add: algebra_simps of_nat_diff)
then show ?thesis
by (simp add: ‹odd n›)
qed
lemma cos_zero_iff:
"cos x = 0 ⟷ ((∃n. odd n ∧ x = real n * (pi/2)) ∨ (∃n. odd n ∧ x = - (real n * (pi/2))))"
(is "?lhs = ?rhs")
proof -
have *: "cos (real n * pi/2) = 0" if "odd n" for n :: nat
proof -
from that obtain m where "n = 2 * m + 1" ..
then show ?thesis
by (simp add: field_simps) (simp add: cos_add add_divide_distrib)
qed
show ?thesis
proof
show ?rhs if ?lhs
using that cos_zero_lemma [of x] cos_zero_lemma [of "-x"] by force
show ?lhs if ?rhs
using that by (auto dest: * simp del: eq_divide_eq_numeral1)
qed
qed
lemma sin_zero_iff:
"sin x = 0 ⟷ ((∃n. even n ∧ x = real n * (pi/2)) ∨ (∃n. even n ∧ x = - (real n * (pi/2))))"
(is "?lhs = ?rhs")
proof
show ?rhs if ?lhs
using that sin_zero_lemma [of x] sin_zero_lemma [of "-x"] by force
show ?lhs if ?rhs
using that by (auto elim: evenE)
qed
lemma sin_zero_pi_iff:
fixes x::real
assumes "¦x¦ < pi"
shows "sin x = 0 ⟷ x = 0"
proof
show "x = 0" if "sin x = 0"
using that assms by (auto simp: sin_zero_iff)
qed auto
lemma cos_zero_iff_int: "cos x = 0 ⟷ (∃i. odd i ∧ x = of_int i * (pi/2))"
proof -
have 1: "⋀n. odd n ⟹ ∃i. odd i ∧ real n = real_of_int i"
by (metis even_of_nat_iff of_int_of_nat_eq)
have 2: "⋀n. odd n ⟹ ∃i. odd i ∧ - (real n * pi) = real_of_int i * pi"
by (metis even_minus even_of_nat_iff mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
have 3: "⟦odd i; ∀n. even n ∨ real_of_int i ≠ - (real n)⟧
⟹ ∃n. odd n ∧ real_of_int i = real n" for i
by (cases i rule: int_cases2) auto
show ?thesis
by (force simp: cos_zero_iff intro!: 1 2 3)
qed
lemma sin_zero_iff_int: "sin x = 0 ⟷ (∃i. even i ∧ x = of_int i * (pi/2))" (is "?lhs = ?rhs")
proof safe
assume ?lhs
then consider (plus) n where "even n" "x = real n * (pi/2)" | (minus) n where "even n" "x = - (real n * (pi/2))"
using sin_zero_iff by auto
then show "∃n. even n ∧ x = of_int n * (pi/2)"
proof cases
case plus
then show ?rhs
by (metis even_of_nat_iff of_int_of_nat_eq)
next
case minus
then show ?thesis
by (rule_tac x="- (int n)" in exI) simp
qed
next
fix i :: int
assume "even i"
then show "sin (of_int i * (pi/2)) = 0"
by (cases i rule: int_cases2, simp_all add: sin_zero_iff)
qed
lemma sin_zero_iff_int2: "sin x = 0 ⟷ (∃i::int. x = of_int i * pi)"
proof -
have "sin x = 0 ⟷ (∃i. even i ∧ x = real_of_int i * (pi/2))"
by (auto simp: sin_zero_iff_int)
also have "... = (∃j. x = real_of_int (2*j) * (pi/2))"
using dvd_triv_left by blast
also have "... = (∃i::int. x = of_int i * pi)"
by auto
finally show ?thesis .
qed
lemma cos_zero_iff_int2:
fixes x::real
shows "cos x = 0 ⟷ (∃n::int. x = n * pi + pi/2)"
using sin_zero_iff_int2[of "x-pi/2"] unfolding sin_cos_eq
by (auto simp add: algebra_simps)
lemma sin_npi_int [simp]: "sin (pi * of_int n) = 0"
by (simp add: sin_zero_iff_int2)
lemma cos_monotone_0_pi:
assumes "0 ≤ y" and "y < x" and "x ≤ pi"
shows "cos x < cos y"
proof -
have "- (x - y) < 0" using assms by auto
from MVT2[OF ‹y < x› DERIV_cos]
obtain z where "y < z" and "z < x" and cos_diff: "cos x - cos y = (x - y) * - sin z"
by auto
then have "0 < z" and "z < pi"
using assms by auto
then have "0 < sin z"
using sin_gt_zero by auto
then have "cos x - cos y < 0"
unfolding cos_diff minus_mult_commute[symmetric]
using ‹- (x - y) < 0› by (rule mult_pos_neg2)
then show ?thesis by auto
qed
lemma cos_monotone_0_pi_le:
assumes "0 ≤ y" and "y ≤ x" and "x ≤ pi"
shows "cos x ≤ cos y"
proof (cases "y < x")
case True
show ?thesis
using cos_monotone_0_pi[OF ‹0 ≤ y› True ‹x ≤ pi›] by auto
next
case False
then have "y = x" using ‹y ≤ x› by auto
then show ?thesis by auto
qed
lemma cos_monotone_minus_pi_0:
assumes "- pi ≤ y" and "y < x" and "x ≤ 0"
shows "cos y < cos x"
proof -
have "0 ≤ - x" and "- x < - y" and "- y ≤ pi"
using assms by auto
from cos_monotone_0_pi[OF this] show ?thesis
unfolding cos_minus .
qed
lemma cos_monotone_minus_pi_0':
assumes "- pi ≤ y" and "y ≤ x" and "x ≤ 0"
shows "cos y ≤ cos x"
proof (cases "y < x")
case True
show ?thesis using cos_monotone_minus_pi_0[OF ‹-pi ≤ y› True ‹x ≤ 0›]
by auto
next
case False
then have "y = x" using ‹y ≤ x› by auto
then show ?thesis by auto
qed
lemma sin_monotone_2pi:
assumes "- (pi/2) ≤ y" and "y < x" and "x ≤ pi/2"
shows "sin y < sin x"
unfolding sin_cos_eq
using assms by (auto intro: cos_monotone_0_pi)
lemma sin_monotone_2pi_le:
assumes "- (pi/2) ≤ y" and "y ≤ x" and "x ≤ pi/2"
shows "sin y ≤ sin x"
by (metis assms le_less sin_monotone_2pi)
lemma sin_x_le_x:
fixes x :: real
assumes "x ≥ 0"
shows "sin x ≤ x"
proof -
let ?f = "λx. x - sin x"
have "⋀u. ⟦0 ≤ u; u ≤ x⟧ ⟹ ∃y. (?f has_real_derivative 1 - cos u) (at u)"
by (auto intro!: derivative_eq_intros simp: field_simps)
then have "?f x ≥ ?f 0"
by (metis cos_le_one diff_ge_0_iff_ge DERIV_nonneg_imp_nondecreasing [OF assms])
then show "sin x ≤ x" by simp
qed
lemma sin_x_ge_neg_x:
fixes x :: real
assumes x: "x ≥ 0"
shows "sin x ≥ - x"
proof -
let ?f = "λx. x + sin x"
have §: "⋀u. ⟦0 ≤ u; u ≤ x⟧ ⟹ ∃y. (?f has_real_derivative 1 + cos u) (at u)"
by (auto intro!: derivative_eq_intros simp: field_simps)
have "?f x ≥ ?f 0"
by (rule DERIV_nonneg_imp_nondecreasing [OF assms]) (use § real_0_le_add_iff in force)
then show "sin x ≥ -x" by simp
qed
lemma abs_sin_x_le_abs_x: "¦sin x¦ ≤ ¦x¦"
for x :: real
using sin_x_ge_neg_x [of x] sin_x_le_x [of x] sin_x_ge_neg_x [of "-x"] sin_x_le_x [of "-x"]
by (auto simp: abs_real_def)
subsection ‹More Corollaries about Sine and Cosine›
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi/2) = (-1) ^ n"
proof -
have "sin ((real n + 1/2) * pi) = cos (real n * pi)"
by (auto simp: algebra_simps sin_add)
then show ?thesis
by (simp add: distrib_right add_divide_distrib add.commute mult.commute [of pi])
qed
lemma cos_2npi [simp]: "cos (2 * real n * pi) = 1"
for n :: nat
by (cases "even n") (simp_all add: cos_double mult.assoc)
lemma cos_3over2_pi [simp]: "cos (3/2*pi) = 0"
proof -
have "cos (3/2*pi) = cos (pi + pi/2)"
by simp
also have "... = 0"
by (subst cos_add, simp)
finally show ?thesis .
qed
lemma sin_2npi [simp]: "sin (2 * real n * pi) = 0"
for n :: nat
by (auto simp: mult.assoc sin_double)
lemma sin_3over2_pi [simp]: "sin (3/2*pi) = - 1"
proof -
have "sin (3/2*pi) = sin (pi + pi/2)"
by simp
also have "... = -1"
by (subst sin_add, simp)
finally show ?thesis .
qed
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0"
by (simp only: cos_add sin_add of_nat_Suc distrib_right distrib_left add_divide_distrib, auto)
lemma DERIV_cos_add [simp]: "DERIV (λx. cos (x + k)) xa :> - sin (xa + k)"
by (auto intro!: derivative_eq_intros)
lemma sin_zero_norm_cos_one:
fixes x :: "'a::{real_normed_field,banach}"
assumes "sin x = 0"
shows "norm (cos x) = 1"
using sin_cos_squared_add [of x, unfolded assms]
by (simp add: square_norm_one)
lemma sin_zero_abs_cos_one: "sin x = 0 ⟹ ¦cos x¦ = (1::real)"
using sin_zero_norm_cos_one by fastforce
lemma cos_one_sin_zero:
fixes x :: "'a::{real_normed_field,banach}"
assumes "cos x = 1"
shows "sin x = 0"
using sin_cos_squared_add [of x, unfolded assms]
by simp
lemma sin_times_pi_eq_0: "sin (x * pi) = 0 ⟷ x ∈ ℤ"
by (simp add: sin_zero_iff_int2) (metis Ints_cases Ints_of_int)
lemma cos_one_2pi: "cos x = 1 ⟷ (∃n::nat. x = n * 2 * pi) ∨ (∃n::nat. x = - (n * 2 * pi))"
(is "?lhs = ?rhs")
proof
assume ?lhs
then have "sin x = 0"
by (simp add: cos_one_sin_zero)
then show ?rhs
proof (simp only: sin_zero_iff, elim exE disjE conjE)
fix n :: nat
assume n: "even n" "x = real n * (pi/2)"
then obtain m where m: "n = 2 * m"
using dvdE by blast
then have me: "even m" using ‹?lhs› n
by (auto simp: field_simps) (metis one_neq_neg_one power_minus_odd power_one)
show ?rhs
using m me n
by (auto simp: field_simps elim!: evenE)
next
fix n :: nat
assume n: "even n" "x = - (real n * (pi/2))"
then obtain m where m: "n = 2 * m"
using dvdE by blast
then have me: "even m" using ‹?lhs› n
by (auto simp: field_simps) (metis one_neq_neg_one power_minus_odd power_one)
show ?rhs
using m me n
by (auto simp: field_simps elim!: evenE)
qed
next
assume ?rhs
then show "cos x = 1"
by (metis cos_2npi cos_minus mult.assoc mult.left_commute)
qed
lemma cos_one_2pi_int: "cos x = 1 ⟷ (∃n::int. x = n * 2 * pi)" (is "?lhs = ?rhs")
proof
assume "cos x = 1"
then show ?rhs
by (metis cos_one_2pi mult.commute mult_minus_right of_int_minus of_int_of_nat_eq)
next
assume ?rhs
then show "cos x = 1"
by (clarsimp simp add: cos_one_2pi) (metis mult_minus_right of_int_of_nat)
qed
lemma cos_npi_int [simp]:
fixes n::int shows "cos (pi * of_int n) = (if even n then 1 else -1)"
by (auto simp: algebra_simps cos_one_2pi_int elim!: oddE evenE)
lemma sin_cos_sqrt: "0 ≤ sin x ⟹ sin x = sqrt (1 - (cos(x) ^ 2))"
using sin_squared_eq real_sqrt_unique by fastforce
lemma sin_eq_0_pi: "- pi < x ⟹ x < pi ⟹ sin x = 0 ⟹ x = 0"
by (metis sin_gt_zero sin_minus minus_less_iff neg_0_less_iff_less not_less_iff_gr_or_eq)
lemma cos_treble_cos: "cos (3 * x) = 4 * cos x ^ 3 - 3 * cos x"
for x :: "'a::{real_normed_field,banach}"
proof -
have *: "(sin x * (sin x * 3)) = 3 - (cos x * (cos x * 3))"
by (simp add: mult.assoc [symmetric] sin_squared_eq [unfolded power2_eq_square])
have "cos(3 * x) = cos(2*x + x)"
by simp
also have "… = 4 * cos x ^ 3 - 3 * cos x"
unfolding cos_add cos_double sin_double
by (simp add: * field_simps power2_eq_square power3_eq_cube)
finally show ?thesis .
qed
lemma cos_45: "cos (pi/4) = sqrt 2 / 2"
proof -
let ?c = "cos (pi/4)"
let ?s = "sin (pi/4)"
have nonneg: "0 ≤ ?c"
by (simp add: cos_ge_zero)
have "0 = cos (pi/4 + pi/4)"
by simp
also have "cos (pi/4 + pi/4) = ?c⇧2 - ?s⇧2"
by (simp only: cos_add power2_eq_square)
also have "… = 2 * ?c⇧2 - 1"
by (simp add: sin_squared_eq)
finally have "?c⇧2 = (sqrt 2 / 2)⇧2"
by (simp add: power_divide)
then show ?thesis
using nonneg by (rule power2_eq_imp_eq) simp
qed
lemma cos_30: "cos (pi/6) = sqrt 3/2"
proof -
let ?c = "cos (pi/6)"
let ?s = "sin (pi/6)"
have pos_c: "0 < ?c"
by (rule cos_gt_zero) simp_all
have "0 = cos (pi/6 + pi/6 + pi/6)"
by simp
also have "… = (?c * ?c - ?s * ?s) * ?c - (?s * ?c + ?c * ?s) * ?s"
by (simp only: cos_add sin_add)
also have "… = ?c * (?c⇧2 - 3 * ?s⇧2)"
by (simp add: algebra_simps power2_eq_square)
finally have "?c⇧2 = (sqrt 3/2)⇧2"
using pos_c by (simp add: sin_squared_eq power_divide)
then show ?thesis
using pos_c [THEN order_less_imp_le]
by (rule power2_eq_imp_eq) simp
qed
lemma sin_45: "sin (pi/4) = sqrt 2 / 2"
by (simp add: sin_cos_eq cos_45)
lemma sin_60: "sin (pi/3) = sqrt 3/2"
by (simp add: sin_cos_eq cos_30)
lemma cos_60: "cos (pi/3) = 1/2"
proof -
have "0 ≤ cos (pi/3)"
by (rule cos_ge_zero) (use pi_half_ge_zero in ‹linarith+›)
then show ?thesis
by (simp add: cos_squared_eq sin_60 power_divide power2_eq_imp_eq)
qed
lemma sin_30: "sin (pi/6) = 1/2"
by (simp add: sin_cos_eq cos_60)
lemma cos_120: "cos (2 * pi/3) = -1/2"
and sin_120: "sin (2 * pi/3) = sqrt 3 / 2"
using sin_double[of "pi/3"] cos_double[of "pi/3"]
by (simp_all add: power2_eq_square sin_60 cos_60)
lemma cos_120': "cos (pi * 2 / 3) = -1/2"
using cos_120 by (subst mult.commute)
lemma sin_120': "sin (pi * 2 / 3) = sqrt 3 / 2"
using sin_120 by (subst mult.commute)
lemma cos_integer_2pi: "n ∈ ℤ ⟹ cos(2 * pi * n) = 1"
by (metis Ints_cases cos_one_2pi_int mult.assoc mult.commute)
lemma sin_integer_2pi: "n ∈ ℤ ⟹ sin(2 * pi * n) = 0"
by (metis sin_two_pi Ints_mult mult.assoc mult.commute sin_times_pi_eq_0)
lemma cos_int_2pin [simp]: "cos ((2 * pi) * of_int n) = 1"
by (simp add: cos_one_2pi_int)
lemma sin_int_2pin [simp]: "sin ((2 * pi) * of_int n) = 0"
by (metis Ints_of_int sin_integer_2pi)
lemma sincos_principal_value: "∃y. (- pi < y ∧ y ≤ pi) ∧ (sin y = sin x ∧ cos y = cos x)"
proof -
define y where "y ≡ pi - (2 * pi) * frac ((pi - x) / (2 * pi))"
have "-pi < y"" y ≤ pi"
by (auto simp: field_simps frac_lt_1 y_def)
moreover
have "sin y = sin x" "cos y = cos x"
unfolding y_def
apply (simp_all add: frac_def divide_simps sin_add cos_add)
by (metis sin_int_2pin cos_int_2pin diff_zero add.right_neutral mult.commute mult.left_neutral mult_zero_left)+
ultimately
show ?thesis by metis
qed
subsection ‹Tangent›
definition tan :: "'a ⇒ 'a::{real_normed_field,banach}"
where "tan = (λx. sin x / cos x)"
lemma tan_of_real: "of_real (tan x) = (tan (of_real x) :: 'a::{real_normed_field,banach})"
by (simp add: tan_def sin_of_real cos_of_real)
lemma tan_in_Reals [simp]: "z ∈ ℝ ⟹ tan z ∈ ℝ"
for z :: "'a::{real_normed_field,banach}"
by (simp add: tan_def)
lemma tan_zero [simp]: "tan 0 = 0"
by (simp add: tan_def)
lemma tan_pi [simp]: "tan pi = 0"
by (simp add: tan_def)
lemma tan_npi [simp]: "tan (real n * pi) = 0"
for n :: nat
by (simp add: tan_def)
lemma tan_pi_half [simp]: "tan (pi / 2) = 0"
by (simp add: tan_def)
lemma tan_minus [simp]: "tan (- x) = - tan x"
by (simp add: tan_def)
lemma tan_periodic [simp]: "tan (x + 2 * pi) = tan x"
by (simp add: tan_def)
lemma lemma_tan_add1: "cos x ≠ 0 ⟹ cos y ≠ 0 ⟹ 1 - tan x * tan y = cos (x + y)/(cos x * cos y)"
by (simp add: tan_def cos_add field_simps)
lemma add_tan_eq: "cos x ≠ 0 ⟹ cos y ≠ 0 ⟹ tan x + tan y = sin(x + y)/(cos x * cos y)"
for x :: "'a::{real_normed_field,banach}"
by (simp add: tan_def sin_add field_simps)
lemma tan_eq_0_cos_sin: "tan x = 0 ⟷ cos x = 0 ∨ sin x = 0"
by (auto simp: tan_def)
text ‹Note: half of these zeros would normally be regarded as undefined cases.›
lemma tan_eq_0_Ex:
assumes "tan x = 0"
obtains k::int where "x = (k/2) * pi"
using assms
by (metis cos_zero_iff_int mult.commute sin_zero_iff_int tan_eq_0_cos_sin times_divide_eq_left)
lemma tan_add:
"cos x ≠ 0 ⟹ cos y ≠ 0 ⟹ cos (x + y) ≠ 0 ⟹ tan (x + y) = (tan x + tan y)/(1 - tan x * tan y)"
for x :: "'a::{real_normed_field,banach}"
by (simp add: add_tan_eq lemma_tan_add1 field_simps) (simp add: tan_def)
lemma tan_double: "cos x ≠ 0 ⟹ cos (2 * x) ≠ 0 ⟹ tan (2 * x) = (2 * tan x) / (1 - (tan x)⇧2)"
for x :: "'a::{real_normed_field,banach}"
using tan_add [of x x] by (simp add: power2_eq_square)
lemma tan_gt_zero: "0 < x ⟹ x < pi/2 ⟹ 0 < tan x"
by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
lemma tan_less_zero:
assumes "- pi/2 < x" and "x < 0"
shows "tan x < 0"
proof -
have "0 < tan (- x)"
using assms by (simp only: tan_gt_zero)
then show ?thesis by simp
qed
lemma tan_half: "tan x = sin (2 * x) / (cos (2 * x) + 1)"
for x :: "'a::{real_normed_field,banach,field}"
unfolding tan_def sin_double cos_double sin_squared_eq
by (simp add: power2_eq_square)
lemma tan_30: "tan (pi/6) = 1 / sqrt 3"
unfolding tan_def by (simp add: sin_30 cos_30)
lemma tan_45: "tan (pi/4) = 1"
unfolding tan_def by (simp add: sin_45 cos_45)
lemma tan_60: "tan (pi/3) = sqrt 3"
unfolding tan_def by (simp add: sin_60 cos_60)
lemma DERIV_tan [simp]: "cos x ≠ 0 ⟹ DERIV tan x :> inverse ((cos x)⇧2)"
for x :: "'a::{real_normed_field,banach}"
unfolding tan_def
by (auto intro!: derivative_eq_intros, simp add: divide_inverse power2_eq_square)
declare DERIV_tan[THEN DERIV_chain2, derivative_intros]
and DERIV_tan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemmas has_derivative_tan[derivative_intros] = DERIV_tan[THEN DERIV_compose_FDERIV]
lemma isCont_tan: "cos x ≠ 0 ⟹ isCont tan x"
for x :: "'a::{real_normed_field,banach}"
by (rule DERIV_tan [THEN DERIV_isCont])
lemma isCont_tan' [simp,continuous_intros]:
fixes a :: "'a::{real_normed_field,banach}" and f :: "'a ⇒ 'a"
shows "isCont f a ⟹ cos (f a) ≠ 0 ⟹ isCont (λx. tan (f x)) a"
by (rule isCont_o2 [OF _ isCont_tan])
lemma tendsto_tan [tendsto_intros]:
fixes f :: "'a ⇒ 'a::{real_normed_field,banach}"
shows "(f ⤏ a) F ⟹ cos a ≠ 0 ⟹ ((λx. tan (f x)) ⤏ tan a) F"
by (rule isCont_tendsto_compose [OF isCont_tan])
lemma continuous_tan:
fixes f :: "'a ⇒ 'a::{real_normed_field,banach}"
shows "continuous F f ⟹ cos (f (Lim F (λx. x))) ≠ 0 ⟹ continuous F (λx. tan (f x))"
unfolding continuous_def by (rule tendsto_tan)
lemma continuous_on_tan [continuous_intros]:
fixes f :: "'a ⇒ 'a::{real_normed_field,banach}"
shows "continuous_on s f ⟹ (∀x∈s. cos (f x) ≠ 0) ⟹ continuous_on s (λx. tan (f x))"
unfolding continuous_on_def by (auto intro: tendsto_tan)
lemma continuous_within_tan [continuous_intros]:
fixes f :: "'a ⇒ 'a::{real_normed_field,banach}"
shows "continuous (at x within s) f ⟹
cos (f x) ≠ 0 ⟹ continuous (at x within s) (λx. tan (f x))"
unfolding continuous_within by (rule tendsto_tan)
lemma LIM_cos_div_sin: "(λx. cos(x)/sin(x)) ─pi/2→ 0"
by (rule tendsto_cong_limit, (rule tendsto_intros)+, simp_all)
lemma lemma_tan_total:
assumes "0 < y" shows "∃x. 0 < x ∧ x < pi/2 ∧ y < tan x"
proof -
obtain s where "0 < s"
and s: "⋀x. ⟦x ≠ pi/2; norm (x - pi/2) < s⟧ ⟹ norm (cos x / sin x - 0) < inverse y"
using LIM_D [OF LIM_cos_div_sin, of "inverse y"] that assms by force
obtain e where e: "0 < e" "e < s" "e < pi/2"
using ‹0 < s› field_lbound_gt_zero pi_half_gt_zero by blast
show ?thesis
proof (intro exI conjI)
have "0 < sin e" "0 < cos e"
using e by (auto intro: cos_gt_zero sin_gt_zero2 simp: mult.commute)
then
show "y < tan (pi/2 - e)"
using s [of "pi/2 - e"] e assms
by (simp add: tan_def sin_diff cos_diff) (simp add: field_simps split: if_split_asm)
qed (use e in auto)
qed
lemma tan_total_pos:
assumes "0 ≤ y" shows "∃x. 0 ≤ x ∧ x < pi/2 ∧ tan x = y"
proof (cases "y = 0")
case True
then show ?thesis
using pi_half_gt_zero tan_zero by blast
next
case False
with assms have "y > 0"
by linarith
obtain x where x: "0 < x" "x < pi/2" "y < tan x"
using lemma_tan_total ‹0 < y› by blast
have "∃u≥0. u ≤ x ∧ tan u = y"
proof (intro IVT allI impI)
show "isCont tan u" if "0 ≤ u ∧ u ≤ x" for u
proof -
have "cos u ≠ 0"
using antisym_conv2 cos_gt_zero that x(2) by fastforce
with assms show ?thesis
by (auto intro!: DERIV_tan [THEN DERIV_isCont])
qed
qed (use assms x in auto)
then show ?thesis
using x(2) by auto
qed
lemma lemma_tan_total1: "∃x. -(pi/2) < x ∧ x < (pi/2) ∧ tan x = y"
proof (cases "0::real" y rule: le_cases)
case le
then show ?thesis
by (meson less_le_trans minus_pi_half_less_zero tan_total_pos)
next
case ge
with tan_total_pos [of "-y"] obtain x where "0 ≤ x" "x < pi/2" "tan x = - y"
by force
then show ?thesis
by (rule_tac x="-x" in exI) auto
qed
proposition tan_total: "∃! x. -(pi/2) < x ∧ x < (pi/2) ∧ tan x = y"
proof -
have "u = v" if u: "- (pi/2) < u" "u < pi/2" and v: "- (pi/2) < v" "v < pi/2"
and eq: "tan u = tan v" for u v
proof (cases u v rule: linorder_cases)
case less
have "⋀x. u ≤ x ∧ x ≤ v ⟶ isCont tan x"
by (metis cos_gt_zero_pi isCont_tan le_less_trans less_irrefl less_le_trans u(1) v(2))
then have "continuous_on {u..v} tan"
by (simp add: continuous_at_imp_continuous_on)
moreover have "⋀x. u < x ∧ x < v ⟹ tan differentiable (at x)"
by (metis DERIV_tan cos_gt_zero_pi real_differentiable_def less_numeral_extra(3) order.strict_trans u(1) v(2))
ultimately obtain z where "u < z" "z < v" "DERIV tan z :> 0"
by (metis less Rolle eq)
moreover have "cos z ≠ 0"
by (metis (no_types) ‹u < z› ‹z < v› cos_gt_zero_pi less_le_trans linorder_not_less not_less_iff_gr_or_eq u(1) v(2))
ultimately show ?thesis
using DERIV_unique [OF _ DERIV_tan] by fastforce
next
case greater
have "⋀x. v ≤ x ∧ x ≤ u ⟹ isCont tan x"
by (metis cos_gt_zero_pi isCont_tan le_less_trans less_irrefl less_le_trans u(2) v(1))
then have "continuous_on {v..u} tan"
by (simp add: continuous_at_imp_continuous_on)
moreover have "⋀x. v < x ∧ x < u ⟹ tan differentiable (at x)"
by (metis DERIV_tan cos_gt_zero_pi real_differentiable_def less_numeral_extra(3) order.strict_trans u(2) v(1))
ultimately obtain z where "v < z" "z < u" "DERIV tan z :> 0"
by (metis greater Rolle eq)
moreover have "cos z ≠ 0"
by (metis ‹v < z› ‹z < u› cos_gt_zero_pi less_eq_real_def less_le_trans order_less_irrefl u(2) v(1))
ultimately show ?thesis
using DERIV_unique [OF _ DERIV_tan] by fastforce
qed auto
then have "∃!x. - (pi/2) < x ∧ x < pi/2 ∧ tan x = y"
if x: "- (pi/2) < x" "x < pi/2" "tan x = y" for x
using that by auto
then show ?thesis
using lemma_tan_total1 [where y = y]
by auto
qed
lemma tan_monotone:
assumes "- (pi/2) < y" and "y < x" and "x < pi/2"
shows "tan y < tan x"
proof -
have "DERIV tan x' :> inverse ((cos x')⇧2)" if "y ≤ x'" "x' ≤ x" for x'
proof -
have "-(pi/2) < x'" and "x' < pi/2"
using that assms by auto
with cos_gt_zero_pi have "cos x' ≠ 0" by force
then show "DERIV tan x' :> inverse ((cos x')⇧2)"
by (rule DERIV_tan)
qed
from MVT2[OF ‹y < x› this]
obtain z where "y < z" and "z < x"
and tan_diff: "tan x - tan y = (x - y) * inverse ((cos z)⇧2)" by auto
then have "- (pi/2) < z" and "z < pi/2"
using assms by auto
then have "0 < cos z"
using cos_gt_zero_pi by auto
then have inv_pos: "0 < inverse ((cos z)⇧2)"
by auto
have "0 < x - y" using ‹y < x› by auto
with inv_pos have "0 < tan x - tan y"
unfolding tan_diff by auto
then show ?thesis by auto
qed
lemma tan_monotone':
assumes "- (pi/2) < y"
and "y < pi/2"
and "- (pi/2) < x"
and "x < pi/2"
shows "y < x ⟷ tan y < tan x"
proof
assume "y < x"
then show "tan y < tan x"
using tan_monotone and ‹- (pi/2) < y› and ‹x < pi/2› by auto
next
assume "tan y < tan x"
show "y < x"
proof (rule ccontr)
assume "¬ ?thesis"
then have "x ≤ y" by auto
then have "tan x ≤ tan y"
proof (cases "x = y")
case True
then show ?thesis by auto
next
case False
then have "x < y" using ‹x ≤ y› by auto
from tan_monotone[OF ‹- (pi/2) < x› this ‹y < pi/2›] show ?thesis
by auto
qed
then show False
using ‹tan y < tan x› by auto
qed
qed
lemma tan_inverse: "1 / (tan y) = tan (pi/2 - y)"
unfolding tan_def sin_cos_eq[of y] cos_sin_eq[of y] by auto
lemma tan_periodic_pi[simp]: "tan (x + pi) = tan x"
by (simp add: tan_def)
lemma tan_periodic_nat[simp]: "tan (x + real n * pi) = tan x"
proof (induct n arbitrary: x)
case 0
then show ?case by simp
next
case (Suc n)
have split_pi_off: "x + real (Suc n) * pi = (x + real n * pi) + pi"
unfolding Suc_eq_plus1 of_nat_add distrib_right by auto
show ?case
unfolding split_pi_off using Suc by auto
qed
lemma tan_periodic_int[simp]: "tan (x + of_int i * pi) = tan x"
proof (cases "0 ≤ i")
case False
then have i_nat: "of_int i = - of_int (nat (- i))" by auto
then show ?thesis
by (smt (verit, best) mult_minus_left of_int_of_nat_eq tan_periodic_nat)
qed (use zero_le_imp_eq_int in fastforce)
lemma tan_periodic_n[simp]: "tan (x + numeral n * pi) = tan x"
using tan_periodic_int[of _ "numeral n" ] by simp
lemma tan_minus_45 [simp]: "tan (-(pi/4)) = -1"
unfolding tan_def by (simp add: sin_45 cos_45)
lemma tan_diff:
"cos x ≠ 0 ⟹ cos y ≠ 0 ⟹ cos (x - y) ≠ 0 ⟹ tan (x - y) = (tan x - tan y)/(1 + tan x * tan y)"
for x :: "'a::{real_normed_field,banach}"
using tan_add [of x "-y"] by simp
lemma tan_pos_pi2_le: "0 ≤ x ⟹ x < pi/2 ⟹ 0 ≤ tan x"
using less_eq_real_def tan_gt_zero by auto
lemma cos_tan: "¦x¦ < pi/2 ⟹ cos x = 1 / sqrt (1 + tan x ^ 2)"
using cos_gt_zero_pi [of x]
by (simp add: field_split_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
lemma cos_tan_half: "cos x ≠0 ⟹ cos (2*x) = (1 - (tan x)^2) / (1 + (tan x)^2)"
unfolding cos_double tan_def by (auto simp add:field_simps )
lemma sin_tan: "¦x¦ < pi/2 ⟹ sin x = tan x / sqrt (1 + tan x ^ 2)"
using cos_gt_zero [of "x"] cos_gt_zero [of "-x"]
by (force simp: field_split_simps tan_def real_sqrt_divide abs_if split: if_split_asm)
lemma sin_tan_half: "sin (2*x) = 2 * tan x / (1 + (tan x)^2)"
unfolding sin_double tan_def
by (cases "cos x=0") (auto simp add:field_simps power2_eq_square)
lemma tan_mono_le: "-(pi/2) < x ⟹ x ≤ y ⟹ y < pi/2 ⟹ tan x ≤ tan y"
using less_eq_real_def tan_monotone by auto
lemma tan_mono_lt_eq:
"-(pi/2) < x ⟹ x < pi/2 ⟹ -(pi/2) < y ⟹ y < pi/2 ⟹ tan x < tan y ⟷ x < y"
using tan_monotone' by blast
lemma tan_mono_le_eq:
"-(pi/2) < x ⟹ x < pi/2 ⟹ -(pi/2) < y ⟹ y < pi/2 ⟹ tan x ≤ tan y ⟷ x ≤ y"
by (meson tan_mono_le not_le tan_monotone)
lemma tan_bound_pi2: "¦x¦ < pi/4 ⟹ ¦tan x¦ < 1"
using tan_45 tan_monotone [of x "pi/4"] tan_monotone [of "-x" "pi/4"]
by (auto simp: abs_if split: if_split_asm)
lemma tan_cot: "tan(pi/2 - x) = inverse(tan x)"
by (simp add: tan_def sin_diff cos_diff)
subsection ‹Cotangent›
definition cot :: "'a ⇒ 'a::{real_normed_field,banach}"
where "cot = (λx. cos x / sin x)"
lemma cot_of_real: "of_real (cot x) = (cot (of_real x) :: 'a::{real_normed_field,banach})"
by (simp add: cot_def sin_of_real cos_of_real)
lemma cot_in_Reals [simp]: "z ∈ ℝ ⟹ cot z ∈ ℝ"
for z :: "'a::{real_normed_field,banach}"
by (simp add: cot_def)
lemma cot_zero [simp]: "cot 0 = 0"
by (simp add: cot_def)
lemma cot_pi [simp]: "cot pi = 0"
by (simp add: cot_def)
lemma cot_npi [simp]: "cot (real n * pi) = 0"
for n :: nat
by (simp add: cot_def)
lemma cot_minus [simp]: "cot (- x) = - cot x"
by (simp add: cot_def)
lemma cot_periodic [simp]: "cot (x + 2 * pi) = cot x"
by (simp add: cot_def)
lemma cot_altdef: "cot x = inverse (tan x)"
by (simp add: cot_def tan_def)
lemma tan_altdef: "tan x = inverse (cot x)"
by (simp add: cot_def tan_def)
lemma tan_cot': "tan (pi/2 - x) = cot x"
by (simp add: tan_cot cot_altdef)
lemma cot_gt_zero: "0 < x ⟹ x < pi/2 ⟹ 0 < cot x"
by (simp add: cot_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi)
lemma cot_less_zero:
assumes lb: "- pi/2 < x" and "x < 0"
shows "cot x < 0"
by (smt (verit) assms cot_gt_zero cot_minus divide_minus_left)
lemma DERIV_cot [simp]: "sin x ≠ 0 ⟹ DERIV cot x :> -inverse ((sin x)⇧2)"
for x :: "'a::{real_normed_field,banach}"
unfolding cot_def using cos_squared_eq[of x]
by (auto intro!: derivative_eq_intros) (simp add: divide_inverse power2_eq_square)
lemma isCont_cot: "sin x ≠ 0 ⟹ isCont cot x"
for x :: "'a::{real_normed_field,banach}"
by (rule DERIV_cot [THEN DERIV_isCont])
lemma isCont_cot' [simp,continuous_intros]:
"isCont f a ⟹ sin (f a) ≠ 0 ⟹ isCont (λx. cot (f x)) a"
for a :: "'a::{real_normed_field,banach}" and f :: "'a ⇒ 'a"
by (rule isCont_o2 [OF _ isCont_cot])
lemma tendsto_cot [tendsto_intros]: "(f ⤏ a) F ⟹ sin a ≠ 0 ⟹ ((λx. cot (f x)) ⤏ cot a) F"
for f :: "'a ⇒ 'a::{real_normed_field,banach}"
by (rule isCont_tendsto_compose [OF isCont_cot])
lemma continuous_cot:
"continuous F f ⟹ sin (f (Lim F (λx. x))) ≠ 0 ⟹ continuous F (λx. cot (f x))"
for f :: "'a ⇒ 'a::{real_normed_field,banach}"
unfolding continuous_def by (rule tendsto_cot)
lemma continuous_on_cot [continuous_intros]:
fixes f :: "'a ⇒ 'a::{real_normed_field,banach}"
shows "continuous_on s f ⟹ (∀x∈s. sin (f x) ≠ 0) ⟹ continuous_on s (λx. cot (f x))"
unfolding continuous_on_def by (auto intro: tendsto_cot)
lemma continuous_within_cot [continuous_intros]:
fixes f :: "'a ⇒ 'a::{real_normed_field,banach}"
shows "continuous (at x within s) f ⟹ sin (f x) ≠ 0 ⟹ continuous (at x within s) (λx. cot (f x))"
unfolding continuous_within by (rule tendsto_cot)
subsection ‹Inverse Trigonometric Functions›
definition arcsin :: "real ⇒ real"
where "arcsin y = (THE x. -(pi/2) ≤ x ∧ x ≤ pi/2 ∧ sin x = y)"
definition arccos :: "real ⇒ real"
where "arccos y = (THE x. 0 ≤ x ∧ x ≤ pi ∧ cos x = y)"
definition arctan :: "real ⇒ real"
where "arctan y = (THE x. -(pi/2) < x ∧ x < pi/2 ∧ tan x = y)"
lemma arcsin: "- 1 ≤ y ⟹ y ≤ 1 ⟹ - (pi/2) ≤ arcsin y ∧ arcsin y ≤ pi/2 ∧ sin (arcsin y) = y"
unfolding arcsin_def by (rule theI' [OF sin_total])
lemma arcsin_pi: "- 1 ≤ y ⟹ y ≤ 1 ⟹ - (pi/2) ≤ arcsin y ∧ arcsin y ≤ pi ∧ sin (arcsin y) = y"
by (drule (1) arcsin) (force intro: order_trans)
lemma sin_arcsin [simp]: "- 1 ≤ y ⟹ y ≤ 1 ⟹ sin (arcsin y) = y"
by (blast dest: arcsin)
lemma arcsin_bounded: "- 1 ≤ y ⟹ y ≤ 1 ⟹ - (pi/2) ≤ arcsin y ∧ arcsin y ≤ pi/2"
by (blast dest: arcsin)
lemma arcsin_lbound: "- 1 ≤ y ⟹ y ≤ 1 ⟹ - (pi/2) ≤ arcsin y"
by (blast dest: arcsin)
lemma arcsin_ubound: "- 1 ≤ y ⟹ y ≤ 1 ⟹ arcsin y ≤ pi/2"
by (blast dest: arcsin)
lemma arcsin_lt_bounded:
assumes "- 1 < y" "y < 1"
shows "- (pi/2) < arcsin y ∧ arcsin y < pi/2"
proof -
have "arcsin y ≠ pi/2"
by (metis arcsin assms not_less not_less_iff_gr_or_eq sin_pi_half)
moreover have "arcsin y ≠ - pi/2"
by (metis arcsin assms minus_divide_left not_less not_less_iff_gr_or_eq sin_minus sin_pi_half)
ultimately show ?thesis
using arcsin_bounded [of y] assms by auto
qed
lemma arcsin_sin: "- (pi/2) ≤ x ⟹ x ≤ pi/2 ⟹ arcsin (sin x) = x"
unfolding arcsin_def
using the1_equality [OF sin_total] by simp
lemma arcsin_unique:
assumes "-pi/2 ≤ x" and "x ≤ pi/2" and "sin x = y" shows "arcsin y = x"
using arcsin_sin[of x] assms by force
lemma arcsin_0 [simp]: "arcsin 0 = 0"
using arcsin_sin [of 0] by simp
lemma arcsin_1 [simp]: "arcsin 1 = pi/2"
using arcsin_sin [of "pi/2"] by simp
lemma arcsin_minus_1 [simp]: "arcsin (- 1) = - (pi/2)"
using arcsin_sin [of "- pi/2"] by simp
lemma arcsin_minus: "- 1 ≤ x ⟹ x ≤ 1 ⟹ arcsin (- x) = - arcsin x"
by (metis (no_types, opaque_lifting) arcsin arcsin_sin minus_minus neg_le_iff_le sin_minus)
lemma arcsin_one_half [simp]: "arcsin (1/2) = pi / 6"
and arcsin_minus_one_half [simp]: "arcsin (-(1/2)) = -pi / 6"
by (intro arcsin_unique; simp add: sin_30 field_simps)+
lemma arcsin_one_over_sqrt_2: "arcsin (1 / sqrt 2) = pi / 4"
by (rule arcsin_unique) (auto simp: sin_45 field_simps)
lemma arcsin_eq_iff: "¦x¦ ≤ 1 ⟹ ¦y¦ ≤ 1 ⟹ arcsin x = arcsin y ⟷ x = y"
by (metis abs_le_iff arcsin minus_le_iff)
lemma cos_arcsin_nonzero: "- 1 < x ⟹ x < 1 ⟹ cos (arcsin x) ≠ 0"
using arcsin_lt_bounded cos_gt_zero_pi by force
lemma arccos: "- 1 ≤ y ⟹ y ≤ 1 ⟹ 0 ≤ arccos y ∧ arccos y ≤ pi ∧ cos (arccos y) = y"
unfolding arccos_def by (rule theI' [OF cos_total])
lemma cos_arccos [simp]: "- 1 ≤ y ⟹ y ≤ 1 ⟹ cos (arccos y) = y"
by (blast dest: arccos)
lemma arccos_bounded: "- 1 ≤ y ⟹ y ≤ 1 ⟹ 0 ≤ arccos y ∧ arccos y ≤ pi"
by (blast dest: arccos)
lemma arccos_lbound: "- 1 ≤ y ⟹ y ≤ 1 ⟹ 0 ≤ arccos y"
by (blast dest: arccos)
lemma arccos_ubound: "- 1 ≤ y ⟹ y ≤ 1 ⟹ arccos y ≤ pi"
by (blast dest: arccos)
lemma arccos_lt_bounded:
assumes "- 1 < y" "y < 1"
shows "0 < arccos y ∧ arccos y < pi"
proof -
have "arccos y ≠ 0"
by (metis (no_types) arccos assms(1) assms(2) cos_zero less_eq_real_def less_irrefl)
moreover have "arccos y ≠ -pi"
by (metis arccos assms(1) assms(2) cos_minus cos_pi not_less not_less_iff_gr_or_eq)
ultimately show ?thesis
using arccos_bounded [of y] assms
by (metis arccos cos_pi not_less not_less_iff_gr_or_eq)
qed
lemma arccos_cos: "0 ≤ x ⟹ x ≤ pi ⟹ arccos (cos x) = x"
by (auto simp: arccos_def intro!: the1_equality cos_total)
lemma arccos_cos2: "x ≤ 0 ⟹ - pi ≤ x ⟹ arccos (cos x) = -x"
by (auto simp: arccos_def intro!: the1_equality cos_total)
lemma arccos_unique:
assumes "0 ≤ x" and "x ≤ pi" and "cos x = y" shows "arccos y = x"
using arccos_cos assms by blast
lemma cos_arcsin:
assumes "- 1 ≤ x" "x ≤ 1"
shows "cos (arcsin x) = sqrt (1 - x⇧2)"
proof (rule power2_eq_imp_eq)
show "(cos (arcsin x))⇧2 = (sqrt (1 - x⇧2))⇧2"
by (simp add: square_le_1 assms cos_squared_eq)
show "0 ≤ cos (arcsin x)"
using arcsin assms cos_ge_zero by blast
show "0 ≤ sqrt (1 - x⇧2)"
by (simp add: square_le_1 assms)
qed
lemma sin_arccos:
assumes "- 1 ≤ x" "x ≤ 1"
shows "sin (arccos x) = sqrt (1 - x⇧2)"
proof (rule power2_eq_imp_eq)
show "(sin (arccos x))⇧2 = (sqrt (1 - x⇧2))⇧2"
by (simp add: square_le_1 assms sin_squared_eq)
show "0 ≤ sin (arccos x)"
by (simp add: arccos_bounded assms sin_ge_zero)
show "0 ≤ sqrt (1 - x⇧2)"
by (simp add: square_le_1 assms)
qed
lemma arccos_0 [simp]: "arccos 0 = pi/2"
using arccos_cos pi_half_ge_zero by fastforce
lemma arccos_1 [simp]: "arccos 1 = 0"
using arccos_cos by force
lemma arccos_minus_1 [simp]: "arccos (- 1) = pi"
by (metis arccos_cos cos_pi order_refl pi_ge_zero)
lemma arccos_minus: "-1 ≤ x ⟹ x ≤ 1 ⟹ arccos (- x) = pi - arccos x"
by (smt (verit, ccfv_threshold) arccos arccos_cos cos_minus cos_minus_pi)
lemma arccos_one_half [simp]: "arccos (1/2) = pi / 3"
and arccos_minus_one_half [simp]: "arccos (-(1/2)) = 2 * pi / 3"
by (intro arccos_unique; simp add: cos_60 cos_120)+
lemma arccos_one_over_sqrt_2: "arccos (1 / sqrt 2) = pi / 4"
by (rule arccos_unique) (auto simp: cos_45 field_simps)
corollary arccos_minus_abs:
assumes "¦x¦ ≤ 1"
shows "arccos (- x) = pi - arccos x"
using assms by (simp add: arccos_minus)
lemma sin_arccos_nonzero: "- 1 < x ⟹ x < 1 ⟹ sin (arccos x) ≠ 0"
using arccos_lt_bounded sin_gt_zero by force
lemma arctan: "- (pi/2) < arctan y ∧ arctan y < pi/2 ∧ tan (arctan y) = y"
unfolding arctan_def by (rule theI' [OF tan_total])
lemma tan_arctan: "tan (arctan y) = y"
by (simp add: arctan)
lemma arctan_bounded: "- (pi/2) < arctan y ∧ arctan y < pi/2"
by (auto simp only: arctan)
lemma arctan_lbound: "- (pi/2) < arctan y"
by (simp add: arctan)
lemma arctan_ubound: "arctan y < pi/2"
by (auto simp only: arctan)
lemma arctan_unique:
assumes "-(pi/2) < x"
and "x < pi/2"
and "tan x = y"
shows "arctan y = x"
using assms arctan [of y] tan_total [of y] by (fast elim: ex1E)
lemma arctan_tan: "-(pi/2) < x ⟹ x < pi/2 ⟹ arctan (tan x) = x"
by (rule arctan_unique) simp_all
lemma arctan_zero_zero [simp]: "arctan 0 = 0"
by (rule arctan_unique) simp_all
lemma arctan_minus: "arctan (- x) = - arctan x"
using arctan [of "x"] by (auto simp: arctan_unique)
lemma cos_arctan_not_zero [simp]: "cos (arctan x) ≠ 0"
by (intro less_imp_neq [symmetric] cos_gt_zero_pi arctan_lbound arctan_ubound)
lemma tan_eq_arctan_Ex:
shows "tan x = y ⟷ (∃k::int. x = arctan y + k*pi ∨ (x = pi/2 + k*pi ∧ y=0))"
proof
assume lhs: "tan x = y"
obtain k::int where k:"-pi/2 < x-k*pi" "x-k*pi ≤ pi/2"
proof
define k where "k ≡ ceiling (x/pi - 1/2)"
show "- pi / 2 < x - real_of_int k * pi"
using ceiling_divide_lower [of "pi*2" "(x * 2 - pi)"] by (auto simp: k_def field_simps)
show "x-k*pi ≤ pi/2"
using ceiling_divide_upper [of "pi*2" "(x * 2 - pi)"] by (auto simp: k_def field_simps)
qed
have "x = arctan y + of_int k * pi" when "x ≠ pi/2 + k*pi"
proof -
have "tan (x - k * pi) = y" using lhs tan_periodic_int[of _ "-k"] by auto
then have "arctan y = x - real_of_int k * pi"
by (smt (verit) arctan_tan lhs divide_minus_left k mult_minus_left of_int_minus tan_periodic_int that)
then show ?thesis by auto
qed
then show "∃k. x = arctan y + of_int k * pi ∨ (x = pi/2 + k*pi ∧ y=0)"
using lhs k by force
qed (auto simp: arctan)
lemma arctan_tan_eq_abs_pi:
assumes "cos θ ≠ 0"
obtains k where "arctan (tan θ) = θ - of_int k * pi"
by (metis add.commute assms cos_zero_iff_int2 eq_diff_eq tan_eq_arctan_Ex)
lemma tan_eq:
assumes "tan x = tan y" "tan x ≠ 0"
obtains k::int where "x = y + k * pi"
proof -
obtain k0 where k0: "x = arctan (tan y) + real_of_int k0 * pi"
using assms tan_eq_arctan_Ex[of x "tan y"] by auto
obtain k1 where k1: "arctan (tan y) = y - of_int k1 * pi"
using arctan_tan_eq_abs_pi assms tan_eq_0_cos_sin by auto
have "x = y + (k0-k1)*pi"
using k0 k1 by (auto simp: algebra_simps)
with that show ?thesis
by blast
qed
lemma cos_arctan: "cos (arctan x) = 1 / sqrt (1 + x⇧2)"
proof (rule power2_eq_imp_eq)
have "0 < 1 + x⇧2" by (simp add: add_pos_nonneg)
show "0 ≤ 1 / sqrt (1 + x⇧2)" by simp
show "0 ≤ cos (arctan x)"
by (intro less_imp_le cos_gt_zero_pi arctan_lbound arctan_ubound)
have "(cos (arctan x))⇧2 * (1 + (tan (arctan x))⇧2) = 1"
unfolding tan_def by (simp add: distrib_left power_divide)
then show "(cos (arctan x))⇧2 = (1 / sqrt (1 + x⇧2))⇧2"
using ‹0 < 1 + x⇧2› by (simp add: arctan power_divide eq_divide_eq)
qed
lemma sin_arctan: "sin (arctan x) = x / sqrt (1 + x⇧2)"
using add_pos_nonneg [OF zero_less_one zero_le_power2 [of x]]
using tan_arctan [of x] unfolding tan_def cos_arctan
by (simp add: eq_divide_eq)
lemma tan_sec: "cos x ≠ 0 ⟹ 1 + (tan x)⇧2 = (inverse (cos x))⇧2"
for x :: "'a::{real_normed_field,banach,field}"
by (simp add: add_divide_eq_iff inverse_eq_divide power2_eq_square tan_def)
lemma arctan_less_iff: "arctan x < arctan y ⟷ x < y"
by (metis tan_monotone' arctan_lbound arctan_ubound tan_arctan)
lemma arctan_le_iff: "arctan x ≤ arctan y ⟷ x ≤ y"
by (simp only: not_less [symmetric] arctan_less_iff)
lemma arctan_eq_iff: "arctan x = arctan y ⟷ x = y"
by (simp only: eq_iff [where 'a=real] arctan_le_iff)
lemma zero_less_arctan_iff [simp]: "0 < arctan x ⟷ 0 < x"
using arctan_less_iff [of 0 x] by simp
lemma arctan_less_zero_iff [simp]: "arctan x < 0 ⟷ x < 0"
using arctan_less_iff [of x 0] by simp
lemma zero_le_arctan_iff [simp]: "0 ≤ arctan x ⟷ 0 ≤ x"
using arctan_le_iff [of 0 x] by simp
lemma arctan_le_zero_iff [simp]: "arctan x ≤ 0 ⟷ x ≤ 0"
using arctan_le_iff [of x 0] by simp
lemma arctan_eq_zero_iff [simp]: "arctan x = 0 ⟷ x = 0"
using arctan_eq_iff [of x 0] by simp
lemma continuous_on_arcsin': "continuous_on {-1 .. 1} arcsin"
proof -
have "continuous_on (sin ` {- pi/2 .. pi/2}) arcsin"
by (rule continuous_on_inv) (auto intro: continuous_intros simp: arcsin_sin)
also have "sin ` {- pi/2 .. pi/2} = {-1 .. 1}"
proof safe
fix x :: real
assume "x ∈ {-1..1}"
then show "x ∈ sin ` {- pi/2..pi/2}"
using arcsin_lbound arcsin_ubound
by (intro image_eqI[where x="arcsin x"]) auto
qed simp
finally show ?thesis .
qed
lemma continuous_on_arcsin [continuous_intros]:
"continuous_on s f ⟹ (∀x∈s. -1 ≤ f x ∧ f x ≤ 1) ⟹ continuous_on s (λx. arcsin (f x))"
using continuous_on_compose[of s f, OF _ continuous_on_subset[OF continuous_on_arcsin']]
by (auto simp: comp_def subset_eq)
lemma isCont_arcsin: "-1 < x ⟹ x < 1 ⟹ isCont arcsin x"
using continuous_on_arcsin'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
by (auto simp: continuous_on_eq_continuous_at subset_eq)
lemma continuous_on_arccos': "continuous_on {-1 .. 1} arccos"
proof -
have "continuous_on (cos ` {0 .. pi}) arccos"
by (rule continuous_on_inv) (auto intro: continuous_intros simp: arccos_cos)
also have "cos ` {0 .. pi} = {-1 .. 1}"
proof safe
fix x :: real
assume "x ∈ {-1..1}"
then show "x ∈ cos ` {0..pi}"
using arccos_lbound arccos_ubound
by (intro image_eqI[where x="arccos x"]) auto
qed simp
finally show ?thesis .
qed
lemma continuous_on_arccos [continuous_intros]:
"continuous_on s f ⟹ (∀x∈s. -1 ≤ f x ∧ f x ≤ 1) ⟹ continuous_on s (λx. arccos (f x))"
using continuous_on_compose[of s f, OF _ continuous_on_subset[OF continuous_on_arccos']]
by (auto simp: comp_def subset_eq)
lemma isCont_arccos: "-1 < x ⟹ x < 1 ⟹ isCont arccos x"
using continuous_on_arccos'[THEN continuous_on_subset, of "{ -1 <..< 1 }"]
by (auto simp: continuous_on_eq_continuous_at subset_eq)
lemma isCont_arctan: "isCont arctan x"
proof -
obtain u where u: "- (pi/2) < u" "u < arctan x"
by (meson arctan arctan_less_iff linordered_field_no_lb)
obtain v where v: "arctan x < v" "v < pi/2"
by (meson arctan_less_iff arctan_ubound linordered_field_no_ub)
have "isCont arctan (tan (arctan x))"
proof (rule isCont_inverse_function2 [of u "arctan x" v])
show "⋀z. ⟦u ≤ z; z ≤ v⟧ ⟹ arctan (tan z) = z"
using arctan_unique u(1) v(2) by auto
then show "⋀z. ⟦u ≤ z; z ≤ v⟧ ⟹ isCont tan z"
by (metis arctan cos_gt_zero_pi isCont_tan less_irrefl)
qed (use u v in auto)
then show ?thesis
by (simp add: arctan)
qed
lemma tendsto_arctan [tendsto_intros]: "(f ⤏ x) F ⟹ ((λx. arctan (f x)) ⤏ arctan x) F"
by (rule isCont_tendsto_compose [OF isCont_arctan])
lemma continuous_arctan [continuous_intros]: "continuous F f ⟹ continuous F (λx. arctan (f x))"
unfolding continuous_def by (rule tendsto_arctan)
lemma continuous_on_arctan [continuous_intros]:
"continuous_on s f ⟹ continuous_on s (λx. arctan (f x))"
unfolding continuous_on_def by (auto intro: tendsto_arctan)
lemma DERIV_arcsin:
assumes "- 1 < x" "x < 1"
shows "DERIV arcsin x :> inverse (sqrt (1 - x⇧2))"
proof (rule DERIV_inverse_function)
show "(sin has_real_derivative sqrt (1 - x⇧2)) (at (arcsin x))"
by (rule derivative_eq_intros | use assms cos_arcsin in force)+
show "sqrt (1 - x⇧2) ≠ 0"
using abs_square_eq_1 assms by force
qed (use assms isCont_arcsin in auto)
lemma DERIV_arccos:
assumes "- 1 < x" "x < 1"
shows "DERIV arccos x :> inverse (- sqrt (1 - x⇧2))"
proof (rule DERIV_inverse_function)
show "(cos has_real_derivative - sqrt (1 - x⇧2)) (at (arccos x))"
by (rule derivative_eq_intros | use assms sin_arccos in force)+
show "- sqrt (1 - x⇧2) ≠ 0"
using abs_square_eq_1 assms by force
qed (use assms isCont_arccos in auto)
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x⇧2)"
proof (rule DERIV_inverse_function)
have "inverse ((cos (arctan x))⇧2) = 1 + x⇧2"
by (metis arctan cos_arctan_not_zero power_inverse tan_sec)
then show "(tan has_real_derivative 1 + x⇧2) (at (arctan x))"
by (auto intro!: derivative_eq_intros)
show "⋀y. ⟦x - 1 < y; y < x + 1⟧ ⟹ tan (arctan y) = y"
using tan_arctan by blast
show "1 + x⇧2 ≠ 0"
by (metis power_one sum_power2_eq_zero_iff zero_neq_one)
qed (use isCont_arctan in auto)
declare
DERIV_arcsin[THEN DERIV_chain2, derivative_intros]
DERIV_arcsin[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
DERIV_arccos[THEN DERIV_chain2, derivative_intros]
DERIV_arccos[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
DERIV_arctan[THEN DERIV_chain2, derivative_intros]
DERIV_arctan[THEN DERIV_chain2, unfolded has_field_derivative_def, derivative_intros]
lemmas has_derivative_arctan[derivative_intros] = DERIV_arctan[THEN DERIV_compose_FDERIV]
and has_derivative_arccos[derivative_intros] = DERIV_arccos[THEN DERIV_compose_FDERIV]
and has_derivative_arcsin[derivative_intros] = DERIV_arcsin[THEN DERIV_compose_FDERIV]
lemma filterlim_tan_at_right: "filterlim tan at_bot (at_right (- (pi/2)))"
by (rule filterlim_at_bot_at_right[where Q="λx. - pi/2 < x ∧ x < pi/2" and P="λx. True" and g=arctan])
(auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
intro!: tan_monotone exI[of _ "pi/2"])
lemma filterlim_tan_at_left: "filterlim tan at_top (at_left (pi/2))"
by (rule filterlim_at_top_at_left[where Q="λx. - pi/2 < x ∧ x < pi/2" and P="λx. True" and g=arctan])
(auto simp: arctan le_less eventually_at dist_real_def simp del: less_divide_eq_numeral1
intro!: tan_monotone exI[of _ "pi/2"])
lemma tendsto_arctan_at_top: "(arctan ⤏ (pi/2)) at_top"
proof (rule tendstoI)
fix e :: real
assume "0 < e"
define y where "y = pi/2 - min (pi/2) e"
then have y: "0 ≤ y" "y < pi/2" "pi/2 ≤ e + y"
using ‹0 < e› by auto
show "eventually (λx. dist (arctan x) (pi/2) < e) at_top"
proof (intro eventually_at_top_dense[THEN iffD2] exI allI impI)
fix x
assume "tan y < x"
then have "arctan (tan y) < arctan x"
by (simp add: arctan_less_iff)
with y have "y < arctan x"
by (subst (asm) arctan_tan) simp_all
with arctan_ubound[of x, arith] y ‹0 < e›
show "dist (arctan x) (pi/2) < e"
by (simp add: dist_real_def)
qed
qed
lemma tendsto_arctan_at_bot: "(arctan ⤏ - (pi/2)) at_bot"
unfolding filterlim_at_bot_mirror arctan_minus
by (intro tendsto_minus tendsto_arctan_at_top)
subsection ‹Prove Totality of the Trigonometric Functions›
lemma cos_arccos_abs: "¦y¦ ≤ 1 ⟹ cos (arccos y) = y"
by (simp add: abs_le_iff)
lemma sin_arccos_abs: "¦y¦ ≤ 1 ⟹ sin (arccos y) = sqrt (1 - y⇧2)"
by (simp add: sin_arccos abs_le_iff)
lemma sin_mono_less_eq:
"- (pi/2) ≤ x ⟹ x ≤ pi/2 ⟹ - (pi/2) ≤ y ⟹ y ≤ pi/2 ⟹ sin x < sin y ⟷ x < y"
by (metis not_less_iff_gr_or_eq sin_monotone_2pi)
lemma sin_mono_le_eq:
"- (pi/2) ≤ x ⟹ x ≤ pi/2 ⟹ - (pi/2) ≤ y ⟹ y ≤ pi/2 ⟹ sin x ≤ sin y ⟷ x ≤ y"
by (meson leD le_less_linear sin_monotone_2pi sin_monotone_2pi_le)
lemma sin_inj_pi:
"- (pi/2) ≤ x ⟹ x ≤ pi/2 ⟹ - (pi/2) ≤ y ⟹ y ≤ pi/2 ⟹ sin x = sin y ⟹ x = y"
by (metis arcsin_sin)
lemma arcsin_le_iff:
assumes "x ≥ -1" "x ≤ 1" "y ≥ -pi/2" "y ≤ pi/2"
shows "arcsin x ≤ y ⟷ x ≤ sin y"
proof -
have "arcsin x ≤ y ⟷ sin (arcsin x) ≤ sin y"
using arcsin_bounded[of x] assms by (subst sin_mono_le_eq) auto
also from assms have "sin (arcsin x) = x" by simp
finally show ?thesis .
qed
lemma le_arcsin_iff:
assumes "x ≥ -1" "x ≤ 1" "y ≥ -pi/2" "y ≤ pi/2"
shows "arcsin x ≥ y ⟷ x ≥ sin y"
proof -
have "arcsin x ≥ y ⟷ sin (arcsin x) ≥ sin y"
using arcsin_bounded[of x] assms by (subst sin_mono_le_eq) auto
also from assms have "sin (arcsin x) = x" by simp
finally show ?thesis .
qed
lemma cos_mono_less_eq: "0 ≤ x ⟹ x ≤ pi ⟹ 0 ≤ y ⟹ y ≤ pi ⟹ cos x < cos y ⟷ y < x"
by (meson cos_monotone_0_pi cos_monotone_0_pi_le leD le_less_linear)
lemma cos_mono_le_eq: "0 ≤ x ⟹ x ≤ pi ⟹ 0 ≤ y ⟹ y ≤ pi ⟹ cos x ≤ cos y ⟷ y ≤ x"
by (metis arccos_cos cos_monotone_0_pi_le eq_iff linear)
lemma cos_inj_pi: "0 ≤ x ⟹ x ≤ pi ⟹ 0 ≤ y ⟹ y ≤ pi ⟹ cos x = cos y ⟹ x = y"
by (metis arccos_cos)
lemma arccos_le_pi2: "⟦0 ≤ y; y ≤ 1⟧ ⟹ arccos y ≤ pi/2"
by (metis (mono_tags) arccos_0 arccos cos_le_one cos_monotone_0_pi_le
cos_pi cos_pi_half pi_half_ge_zero antisym_conv less_eq_neg_nonpos linear minus_minus order.trans order_refl)
lemma sincos_total_pi_half:
assumes "0 ≤ x" "0 ≤ y" "x⇧2 + y⇧2 = 1"
shows "∃t. 0 ≤ t ∧ t ≤ pi/2 ∧ x = cos t ∧ y = sin t"
proof -
have x1: "x ≤ 1"
using assms by (metis le_add_same_cancel1 power2_le_imp_le power_one zero_le_power2)
with assms have *: "0 ≤ arccos x" "cos (arccos x) = x"
by (auto simp: arccos)
from assms have "y = sqrt (1 - x⇧2)"
by (metis abs_of_nonneg add.commute add_diff_cancel real_sqrt_abs)
with x1 * assms arccos_le_pi2 [of x] show ?thesis
by (rule_tac x="arccos x" in exI) (auto simp: sin_arccos)
qed
lemma sincos_total_pi:
assumes "0 ≤ y" "x⇧2 + y⇧2 = 1"
shows "∃t. 0 ≤ t ∧ t ≤ pi ∧ x = cos t ∧ y = sin t"
proof (cases rule: le_cases [of 0 x])
case le
from sincos_total_pi_half [OF le] show ?thesis
by (metis pi_ge_two pi_half_le_two add.commute add_le_cancel_left add_mono assms)
next
case ge
then have "0 ≤ -x"
by simp
then obtain t where t: "t≥0" "t ≤ pi/2" "-x = cos t" "y = sin t"
using sincos_total_pi_half assms
by auto (metis ‹0 ≤ - x› power2_minus)
show ?thesis
by (rule exI [where x = "pi -t"]) (use t in auto)
qed
lemma sincos_total_2pi_le:
assumes "x⇧2 + y⇧2 = 1"
shows "∃t. 0 ≤ t ∧ t ≤ 2 * pi ∧ x = cos t ∧ y = sin t"
proof (cases rule: le_cases [of 0 y])
case le
from sincos_total_pi [OF le] show ?thesis
by (metis assms le_add_same_cancel1 mult.commute mult_2_right order.trans)
next
case ge
then have "0 ≤ -y"
by simp
then obtain t where t: "t≥0" "t ≤ pi" "x = cos t" "-y = sin t"
using sincos_total_pi assms
by auto (metis ‹0 ≤ - y› power2_minus)
show ?thesis
by (rule exI [where x = "2 * pi - t"]) (use t in auto)
qed
lemma sincos_total_2pi:
assumes "x⇧2 + y⇧2 = 1"
obtains t where "0 ≤ t" "t < 2*pi" "x = cos t" "y = sin t"
proof -
from sincos_total_2pi_le [OF assms]
obtain t where t: "0 ≤ t" "t ≤ 2*pi" "x = cos t" "y = sin t"
by blast
show ?thesis
by (cases "t = 2 * pi") (use t that in ‹force+›)
qed
lemma arcsin_less_mono: "¦x¦ ≤ 1 ⟹ ¦y¦ ≤ 1 ⟹ arcsin x < arcsin y ⟷ x < y"
by (rule trans [OF sin_mono_less_eq [symmetric]]) (use arcsin_ubound arcsin_lbound in auto)
lemma arcsin_le_mono: "¦x¦ ≤ 1 ⟹ ¦y¦ ≤ 1 ⟹ arcsin x ≤ arcsin y ⟷ x ≤ y"
using arcsin_less_mono not_le by blast
lemma arcsin_less_arcsin: "- 1 ≤ x ⟹ x < y ⟹ y ≤ 1 ⟹ arcsin x < arcsin y"
using arcsin_less_mono by auto
lemma arcsin_le_arcsin: "- 1 ≤ x ⟹ x ≤ y ⟹ y ≤ 1 ⟹ arcsin x ≤ arcsin y"
using arcsin_le_mono by auto
lemma arcsin_nonneg: "x ∈ {0..1} ⟹ arcsin x ≥ 0"
using arcsin_le_arcsin[of 0 x] by simp
lemma arccos_less_mono: "¦x¦ ≤ 1 ⟹ ¦y¦ ≤ 1 ⟹ arccos x < arccos y ⟷ y < x"
by (rule trans [OF cos_mono_less_eq [symmetric]]) (use arccos_ubound arccos_lbound in auto)
lemma arccos_le_mono: "¦x¦ ≤ 1 ⟹ ¦y¦ ≤ 1 ⟹ arccos x ≤ arccos y ⟷ y ≤ x"
using arccos_less_mono [of y x] by (simp add: not_le [symmetric])
lemma arccos_less_arccos: "- 1 ≤ x ⟹ x < y ⟹ y ≤ 1 ⟹ arccos y < arccos x"
using arccos_less_mono by auto
lemma arccos_le_arccos: "- 1 ≤ x ⟹ x ≤ y ⟹ y ≤ 1 ⟹ arccos y ≤ arccos x"
using arccos_le_mono by auto
lemma arccos_eq_iff: "¦x¦ ≤ 1 ∧ ¦y¦ ≤ 1 ⟹ arccos x = arccos y ⟷ x = y"
using cos_arccos_abs by fastforce
lemma arccos_cos_eq_abs:
assumes "¦θ¦ ≤ pi"
shows "arccos (cos θ) = ¦θ¦"
unfolding arccos_def
proof (intro the_equality conjI; clarify?)
show "cos ¦θ¦ = cos θ"
by (simp add: abs_real_def)
show "x = ¦θ¦" if "cos x = cos θ" "0 ≤ x" "x ≤ pi" for x
by (simp add: ‹cos ¦θ¦ = cos θ› assms cos_inj_pi that)
qed (use assms in auto)
lemma arccos_cos_eq_abs_2pi:
obtains k where "arccos (cos θ) = ¦θ - of_int k * (2 * pi)¦"
proof -
define k where "k ≡ ⌊(θ + pi) / (2 * pi)⌋"
have lepi: "¦θ - of_int k * (2 * pi)¦ ≤ pi"
using floor_divide_lower [of "2*pi" "θ + pi"] floor_divide_upper [of "2*pi" "θ + pi"]
by (auto simp: k_def abs_if algebra_simps)
have "arccos (cos θ) = arccos (cos (θ - of_int k * (2 * pi)))"
using cos_int_2pin sin_int_2pin by (simp add: cos_diff mult.commute)
also have "… = ¦θ - of_int k * (2 * pi)¦"
using arccos_cos_eq_abs lepi by blast
finally show ?thesis
using that by metis
qed
lemma arccos_arctan:
assumes "-1 < x" "x < 1"
shows "arccos x = pi/2 - arctan(x / sqrt(1 - x⇧2))"
proof -
have "arctan(x / sqrt(1 - x⇧2)) - (pi/2 - arccos x) = 0"
proof (rule sin_eq_0_pi)
show "- pi < arctan (x / sqrt (1 - x⇧2)) - (pi/2 - arccos x)"
using arctan_lbound [of "x / sqrt(1 - x⇧2)"] arccos_bounded [of x] assms
by (simp add: algebra_simps)
next
show "arctan (x / sqrt (1 - x⇧2)) - (pi/2 - arccos x) < pi"
using arctan_ubound [of "x / sqrt(1 - x⇧2)"] arccos_bounded [of x] assms
by (simp add: algebra_simps)
next
show "sin (arctan (x / sqrt (1 - x⇧2)) - (pi/2 - arccos x)) = 0"
using assms
by (simp add: algebra_simps sin_diff cos_add sin_arccos sin_arctan cos_arctan
power2_eq_square square_eq_1_iff)
qed
then show ?thesis
by simp
qed
lemma arcsin_plus_arccos:
assumes "-1 ≤ x" "x ≤ 1"
shows "arcsin x + arccos x = pi/2"
proof -
have "arcsin x = pi/2 - arccos x"
apply (rule sin_inj_pi)
using assms arcsin [OF assms] arccos [OF assms]
by (auto simp: algebra_simps sin_diff)
then show ?thesis
by (simp add: algebra_simps)
qed
lemma arcsin_arccos_eq: "-1 ≤ x ⟹ x ≤ 1 ⟹ arcsin x = pi/2 - arccos x"
using arcsin_plus_arccos by force
lemma arccos_arcsin_eq: "-1 ≤ x ⟹ x ≤ 1 ⟹ arccos x = pi/2 - arcsin x"
using arcsin_plus_arccos by force
lemma arcsin_arctan: "-1 < x ⟹ x < 1 ⟹ arcsin x = arctan(x / sqrt(1 - x⇧2))"
by (simp add: arccos_arctan arcsin_arccos_eq)
lemma arcsin_arccos_sqrt_pos: "0 ≤ x ⟹ x ≤ 1 ⟹ arcsin x = arccos(sqrt(1 - x⇧2))"
by (smt (verit, del_insts) arccos_cos arcsin_0 arcsin_le_arcsin arcsin_pi cos_arcsin)
lemma arcsin_arccos_sqrt_neg: "-1 ≤ x ⟹ x ≤ 0 ⟹ arcsin x = -arccos(sqrt(1 - x⇧2))"
using arcsin_arccos_sqrt_pos [of "-x"]
by (simp add: arcsin_minus)
lemma arccos_arcsin_sqrt_pos: "0 ≤ x ⟹ x ≤ 1 ⟹ arccos x = arcsin(sqrt(1 - x⇧2))"
by (smt (verit, del_insts) arccos_lbound arccos_le_pi2 arcsin_sin sin_arccos)
lemma arccos_arcsin_sqrt_neg: "-1 ≤ x ⟹ x ≤ 0 ⟹ arccos x = pi - arcsin(sqrt(1 - x⇧2))"
using arccos_arcsin_sqrt_pos [of "-x"]
by (simp add: arccos_minus)
lemma cos_limit_1:
assumes "(λj. cos (θ j)) ⇢ 1"
shows "∃k. (λj. θ j - of_int (k j) * (2 * pi)) ⇢ 0"
proof -
have "∀⇩F j in sequentially. cos (θ j) ∈ {- 1..1}"
by auto
then have "(λj. arccos (cos (θ j))) ⇢ arccos 1"
using continuous_on_tendsto_compose [OF continuous_on_arccos' assms] by auto
moreover have "⋀j. ∃k. arccos (cos (θ j)) = ¦θ j - of_int k * (2 * pi)¦"
using arccos_cos_eq_abs_2pi by metis
then have "∃k. ∀j. arccos (cos (θ j)) = ¦θ j - of_int (k j) * (2 * pi)¦"
by metis
ultimately have "∃k. (λj. ¦θ j - of_int (k j) * (2 * pi)¦) ⇢ 0"
by auto
then show ?thesis
by (simp add: tendsto_rabs_zero_iff)
qed
lemma cos_diff_limit_1:
assumes "(λj. cos (θ j - Θ)) ⇢ 1"
obtains k where "(λj. θ j - of_int (k j) * (2 * pi)) ⇢ Θ"
proof -
obtain k where "(λj. (θ j - Θ) - of_int (k j) * (2 * pi)) ⇢ 0"
using cos_limit_1 [OF assms] by auto
then have "(λj. Θ + ((θ j - Θ) - of_int (k j) * (2 * pi))) ⇢ Θ + 0"
by (rule tendsto_add [OF tendsto_const])
with that show ?thesis
by auto
qed
subsection ‹Machin's formula›
lemma arctan_one: "arctan 1 = pi/4"
by (rule arctan_unique) (simp_all add: tan_45 m2pi_less_pi)
lemma tan_total_pi4:
assumes "¦x¦ < 1"
shows "∃z. - (pi/4) < z ∧ z < pi/4 ∧ tan z = x"
proof
show "- (pi/4) < arctan x ∧ arctan x < pi/4 ∧ tan (arctan x) = x"
unfolding arctan_one [symmetric] arctan_minus [symmetric]
unfolding arctan_less_iff
using assms by (auto simp: arctan)
qed
lemma arctan_add:
assumes "¦x¦ ≤ 1" "¦y¦ < 1"
shows "arctan x + arctan y = arctan ((x + y) / (1 - x * y))"
proof (rule arctan_unique [symmetric])
have "- (pi/4) ≤ arctan x" "- (pi/4) < arctan y"
unfolding arctan_one [symmetric] arctan_minus [symmetric]
unfolding arctan_le_iff arctan_less_iff
using assms by auto
from add_le_less_mono [OF this] show 1: "- (pi/2) < arctan x + arctan y"
by simp
have "arctan x ≤ pi/4" "arctan y < pi/4"
unfolding arctan_one [symmetric]
unfolding arctan_le_iff arctan_less_iff
using assms by auto
from add_le_less_mono [OF this] show 2: "arctan x + arctan y < pi/2"
by simp
show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
using cos_gt_zero_pi [OF 1 2] by (simp add: arctan tan_add)
qed
lemma arctan_double: "¦x¦ < 1 ⟹ 2 * arctan x = arctan ((2 * x) / (1 - x⇧2))"
by (metis arctan_add linear mult_2 not_less power2_eq_square)
theorem machin: "pi/4 = 4 * arctan (1 / 5) - arctan (1/239)"
proof -
have "¦1 / 5¦ < (1 :: real)"
by auto
from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (1 / 5) = arctan (5 / 12)"
by auto
moreover
have "¦5 / 12¦ < (1 :: real)"
by auto
from arctan_add[OF less_imp_le[OF this] this] have "2 * arctan (5 / 12) = arctan (120 / 119)"
by auto
moreover
have "¦1¦ ≤ (1::real)" and "¦1/239¦ < (1::real)"
by auto
from arctan_add[OF this] have "arctan 1 + arctan (1/239) = arctan (120 / 119)"
by auto
ultimately have "arctan 1 + arctan (1/239) = 4 * arctan (1 / 5)"
by auto
then show ?thesis
unfolding arctan_one by algebra
qed
lemma machin_Euler: "5 * arctan (1 / 7) + 2 * arctan (3 / 79) = pi/4"
proof -
have 17: "¦1 / 7¦ < (1 :: real)" by auto
with arctan_double have "2 * arctan (1 / 7) = arctan (7 / 24)"
by simp (simp add: field_simps)
moreover
have "¦7 / 24¦ < (1 :: real)" by auto
with arctan_double have "2 * arctan (7 / 24) = arctan (336 / 527)"
by simp (simp add: field_simps)
moreover
have "¦336 / 527¦ < (1 :: real)" by auto
from arctan_add[OF less_imp_le[OF 17] this]
have "arctan(1/7) + arctan (336 / 527) = arctan (2879 / 3353)"
by auto
ultimately have I: "5 * arctan (1 / 7) = arctan (2879 / 3353)" by auto
have 379: "¦3 / 79¦ < (1 :: real)" by auto
with arctan_double have II: "2 * arctan (3 / 79) = arctan (237 / 3116)"
by simp (simp add: field_simps)
have *: "¦2879 / 3353¦ < (1 :: real)" by auto
have "¦237 / 3116¦ < (1 :: real)" by auto
from arctan_add[OF less_imp_le[OF *] this] have "arctan (2879/3353) + arctan (237/3116) = pi/4"
by (simp add: arctan_one)
with I II show ?thesis by auto
qed
subsection ‹Introducing the inverse tangent power series›
lemma monoseq_arctan_series:
fixes x :: real
assumes "¦x¦ ≤ 1"
shows "monoseq (λn. 1 / real (n * 2 + 1) * x^(n * 2 + 1))"
(is "monoseq ?a")
proof (cases "x = 0")
case True
then show ?thesis by (auto simp: monoseq_def)
next
case False
have "norm x ≤ 1" and "x ≤ 1" and "-1 ≤ x"
using assms by auto
show "monoseq ?a"
proof -
have mono: "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) ≤
1 / real (Suc (n * 2)) * x ^ Suc (n * 2)"
if "0 ≤ x" and "x ≤ 1" for n and x :: real
proof (rule mult_mono)
show "1 / real (Suc (Suc n * 2)) ≤ 1 / real (Suc (n * 2))"
by (rule frac_le) simp_all
show "0 ≤ 1 / real (Suc (n * 2))"
by auto
show "x ^ Suc (Suc n * 2) ≤ x ^ Suc (n * 2)"
by (rule power_decreasing) (simp_all add: ‹0 ≤ x› ‹x ≤ 1›)
show "0 ≤ x ^ Suc (Suc n * 2)"
by (rule zero_le_power) (simp add: ‹0 ≤ x›)
qed
show ?thesis
proof (cases "0 ≤ x")
case True
from mono[OF this ‹x ≤ 1›, THEN allI]
show ?thesis
unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI2)
next
case False
then have "0 ≤ - x" and "- x ≤ 1"
using ‹-1 ≤ x› by auto
from mono[OF this]
have "1 / real (Suc (Suc n * 2)) * x ^ Suc (Suc n * 2) ≥
1 / real (Suc (n * 2)) * x ^ Suc (n * 2)" for n
using ‹0 ≤ -x› by auto
then show ?thesis
unfolding Suc_eq_plus1[symmetric] by (rule mono_SucI1[OF allI])
qed
qed
qed
lemma zeroseq_arctan_series:
fixes x :: real
assumes "¦x¦ ≤ 1"
shows "(λn. 1 / real (n * 2 + 1) * x^(n * 2 + 1)) ⇢ 0"
(is "?a ⇢ 0")
proof (cases "x = 0")
case True
then show ?thesis by simp
next
case False
have "norm x ≤ 1" and "x ≤ 1" and "-1 ≤ x"
using assms by auto
show "?a ⇢ 0"
proof (cases "¦x¦ < 1")
case True
then have "norm x < 1" by auto
from tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_power_zero[OF ‹norm x < 1›, THEN LIMSEQ_Suc]]
have "(λn. 1 / real (n + 1) * x ^ (n + 1)) ⇢ 0"
unfolding inverse_eq_divide Suc_eq_plus1 by simp
then show ?thesis
using pos2 by (rule LIMSEQ_linear)
next
case False
then have "x = -1 ∨ x = 1"
using ‹¦x¦ ≤ 1› by auto
then have n_eq: "⋀ n. x ^ (n * 2 + 1) = x"
unfolding One_nat_def by auto
from tendsto_mult[OF LIMSEQ_inverse_real_of_nat[THEN LIMSEQ_linear, OF pos2, unfolded inverse_eq_divide] tendsto_const[of x]]
show ?thesis
unfolding n_eq Suc_eq_plus1 by auto
qed
qed
lemma summable_arctan_series:
fixes n :: nat
assumes "¦x¦ ≤ 1"
shows "summable (λ k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1)))"
(is "summable (?c x)")
by (rule summable_Leibniz(1),
rule zeroseq_arctan_series[OF assms],
rule monoseq_arctan_series[OF assms])
lemma DERIV_arctan_series:
assumes "¦x¦ < 1"
shows "DERIV (λx'. ∑k. (-1)^k * (1 / real (k * 2 + 1) * x' ^ (k * 2 + 1))) x :>
(∑k. (-1)^k * x^(k * 2))"
(is "DERIV ?arctan _ :> ?Int")
proof -
let ?f = "λn. if even n then (-1)^(n div 2) * 1 / real (Suc n) else 0"
have n_even: "even n ⟹ 2 * (n div 2) = n" for n :: nat
by presburger
then have if_eq: "?f n * real (Suc n) * x'^n =
(if even n then (-1)^(n div 2) * x'^(2 * (n div 2)) else 0)"
for n x'
by auto
have summable_Integral: "summable (λ n. (- 1) ^ n * x^(2 * n))" if "¦x¦ < 1" for x :: real
proof -
from that have "x⇧2 < 1"
by (simp add: abs_square_less_1)
have "summable (λ n. (- 1) ^ n * (x⇧2) ^n)"
by (rule summable_Leibniz(1))
(auto intro!: LIMSEQ_realpow_zero monoseq_realpow ‹x⇧2 < 1› order_less_imp_le[OF ‹x⇧2 < 1›])
then show ?thesis
by (simp only: power_mult)
qed
have sums_even: "(sums) f = (sums) (λ n. if even n then f (n div 2) else 0)"
for f :: "nat ⇒ real"
proof -
have "f sums x = (λ n. if even n then f (n div 2) else 0) sums x" for x :: real
proof
assume "f sums x"
from sums_if[OF sums_zero this] show "(λn. if even n then f (n div 2) else 0) sums x"
by auto
next
assume "(λ n. if even n then f (n div 2) else 0) sums x"
from LIMSEQ_linear[OF this[simplified sums_def] pos2, simplified sum_split_even_odd[simplified mult.commute]]
show "f sums x"
unfolding sums_def by auto
qed
then show ?thesis ..
qed
have Int_eq: "(∑n. ?f n * real (Suc n) * x^n) = ?Int"
unfolding if_eq mult.commute[of _ 2]
suminf_def sums_even[of "λ n. (- 1) ^ n * x ^ (2 * n)", symmetric]
by auto
have arctan_eq: "(∑n. ?f n * x^(Suc n)) = ?arctan x" for x
proof -
have if_eq': "⋀n. (if even n then (- 1) ^ (n div 2) * 1 / real (Suc n) else 0) * x ^ Suc n =
(if even n then (- 1) ^ (n div 2) * (1 / real (Suc (2 * (n div 2))) * x ^ Suc (2 * (n div 2))) else 0)"
using n_even by auto
have idx_eq: "⋀n. n * 2 + 1 = Suc (2 * n)"
by auto
then show ?thesis
unfolding if_eq' idx_eq suminf_def
sums_even[of "λ n. (- 1) ^ n * (1 / real (Suc (2 * n)) * x ^ Suc (2 * n))", symmetric]
by auto
qed
have "DERIV (λ x. ∑ n. ?f n * x^(Suc n)) x :> (∑n. ?f n * real (Suc n) * x^n)"
proof (rule DERIV_power_series')
show "x ∈ {- 1 <..< 1}"
using ‹¦ x ¦ < 1› by auto
show "summable (λ n. ?f n * real (Suc n) * x'^n)"
if x'_bounds: "x' ∈ {- 1 <..< 1}" for x' :: real
proof -
from that have "¦x'¦ < 1" by auto
then show ?thesis
using that sums_summable sums_if [OF sums_0 [of "λx. 0"] summable_sums [OF summable_Integral]]
by (auto simp add: if_distrib [of "λx. x * y" for y] cong: if_cong)
qed
qed auto
then show ?thesis
by (simp only: Int_eq arctan_eq)
qed
lemma arctan_series:
assumes "¦x¦ ≤ 1"
shows "arctan x = (∑k. (-1)^k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
(is "_ = suminf (λ n. ?c x n)")
proof -
let ?c' = "λx n. (-1)^n * x^(n*2)"
have DERIV_arctan_suminf: "DERIV (λ x. suminf (?c x)) x :> (suminf (?c' x))"
if "0 < r" and "r < 1" and "¦x¦ < r" for r x :: real
proof (rule DERIV_arctan_series)
from that show "¦x¦ < 1"
using ‹r < 1› and ‹¦x¦ < r› by auto
qed
{
fix x :: real
assume "¦x¦ ≤ 1"
note summable_Leibniz[OF zeroseq_arctan_series[OF this] monoseq_arctan_series[OF this]]
} note arctan_series_borders = this
have when_less_one: "arctan x = (∑k. ?c x k)" if "¦x¦ < 1" for x :: real
proof -
obtain r where "¦x¦ < r" and "r < 1"
using dense[OF ‹¦x¦ < 1›] by blast
then have "0 < r" and "- r < x" and "x < r" by auto
have suminf_eq_arctan_bounded: "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
if "-r < a" and "b < r" and "a < b" and "a ≤ x" and "x ≤ b" for x a b
proof -
from that have "¦x¦ < r" by auto
show "suminf (?c x) - arctan x = suminf (?c a) - arctan a"
proof (rule DERIV_isconst2[of "a" "b"])
show "a < b" and "a ≤ x" and "x ≤ b"
using ‹a < b› ‹a ≤ x› ‹x ≤ b› by auto
have "∀x. - r < x ∧ x < r ⟶ DERIV (λ x. suminf (?c x) - arctan x) x :> 0"
proof (rule allI, rule impI)
fix x
assume "-r < x ∧ x < r"
then have "¦x¦ < r" by auto
with ‹r < 1› have "¦x¦ < 1" by auto
have "¦- (x⇧2)¦ < 1" using abs_square_less_1 ‹¦x¦ < 1› by auto
then have "(λn. (- (x⇧2)) ^ n) sums (1 / (1 - (- (x⇧2))))"
unfolding real_norm_def[symmetric] by (rule geometric_sums)
then have "(?c' x) sums (1 / (1 - (- (x⇧2))))"
unfolding power_mult_distrib[symmetric] power_mult mult.commute[of _ 2] by auto
then have suminf_c'_eq_geom: "inverse (1 + x⇧2) = suminf (?c' x)"
using sums_unique unfolding inverse_eq_divide by auto
have "DERIV (λ x. suminf (?c x)) x :> (inverse (1 + x⇧2))"
unfolding suminf_c'_eq_geom
by (rule DERIV_arctan_suminf[OF ‹0 < r› ‹r < 1› ‹¦x¦ < r›])
from DERIV_diff [OF this DERIV_arctan] show "DERIV (λx. suminf (?c x) - arctan x) x :> 0"
by auto
qed
then have DERIV_in_rball: "∀y. a ≤ y ∧ y ≤ b ⟶ DERIV (λx. suminf (?c x) - arctan x) y :> 0"
using ‹-r < a› ‹b < r› by auto
then show "⋀y. ⟦a < y; y < b⟧ ⟹ DERIV (λx. suminf (?c x) - arctan x) y :> 0"
using ‹¦x¦ < r› by auto
show "continuous_on {a..b} (λx. suminf (?c x) - arctan x)"
using DERIV_in_rball DERIV_atLeastAtMost_imp_continuous_on by blast
qed
qed
have suminf_arctan_zero: "suminf (?c 0) - arctan 0 = 0"
unfolding Suc_eq_plus1[symmetric] power_Suc2 mult_zero_right arctan_zero_zero suminf_zero
by auto
have "suminf (?c x) - arctan x = 0"
proof (cases "x = 0")
case True
then show ?thesis
using suminf_arctan_zero by auto
next
case False
then have "0 < ¦x¦" and "- ¦x¦ < ¦x¦"
by auto
have "suminf (?c (- ¦x¦)) - arctan (- ¦x¦) = suminf (?c 0) - arctan 0"
by (rule suminf_eq_arctan_bounded[where x1=0 and a1="-¦x¦" and b1="¦x¦", symmetric])
(simp_all only: ‹¦x¦ < r› ‹-¦x¦ < ¦x¦› neg_less_iff_less)
moreover
have "suminf (?c x) - arctan x = suminf (?c (- ¦x¦)) - arctan (- ¦x¦)"
by (rule suminf_eq_arctan_bounded[where x1=x and a1="- ¦x¦" and b1="¦x¦"])
(simp_all only: ‹¦x¦ < r› ‹- ¦x¦ < ¦x¦› neg_less_iff_less)
ultimately show ?thesis
using suminf_arctan_zero by auto
qed
then show ?thesis by auto
qed
show "arctan x = suminf (λn. ?c x n)"
proof (cases "¦x¦ < 1")
case True
then show ?thesis by (rule when_less_one)
next
case False
then have "¦x¦ = 1" using ‹¦x¦ ≤ 1› by auto
let ?a = "λx n. ¦1 / real (n * 2 + 1) * x^(n * 2 + 1)¦"
let ?diff = "λx n. ¦arctan x - (∑i<n. ?c x i)¦"
have "?diff 1 n ≤ ?a 1 n" for n :: nat
proof -
have "0 < (1 :: real)" by auto
moreover
have "?diff x n ≤ ?a x n" if "0 < x" and "x < 1" for x :: real
proof -
from that have "¦x¦ ≤ 1" and "¦x¦ < 1"
by auto
from ‹0 < x› have "0 < 1 / real (0 * 2 + (1::nat)) * x ^ (0 * 2 + 1)"
by auto
note bounds = mp[OF arctan_series_borders(2)[OF ‹¦x¦ ≤ 1›] this, unfolded when_less_one[OF ‹¦x¦ < 1›, symmetric], THEN spec]
have "0 < 1 / real (n*2+1) * x^(n*2+1)"
by (rule mult_pos_pos) (simp_all only: zero_less_power[OF ‹0 < x›], auto)
then have a_pos: "?a x n = 1 / real (n*2+1) * x^(n*2+1)"
by (rule abs_of_pos)
show ?thesis
proof (cases "even n")
case True
then have sgn_pos: "(-1)^n = (1::real)" by auto
from ‹even n› obtain m where "n = 2 * m" ..
then have "2 * m = n" ..
from bounds[of m, unfolded this atLeastAtMost_iff]
have "¦arctan x - (∑i<n. (?c x i))¦ ≤ (∑i<n + 1. (?c x i)) - (∑i<n. (?c x i))"
by auto
also have "… = ?c x n" by auto
also have "… = ?a x n" unfolding sgn_pos a_pos by auto
finally show ?thesis .
next
case False
then have sgn_neg: "(-1)^n = (-1::real)" by auto
from ‹odd n› obtain m where "n = 2 * m + 1" ..
then have m_def: "2 * m + 1 = n" ..
then have m_plus: "2 * (m + 1) = n + 1" by auto
from bounds[of "m + 1", unfolded this atLeastAtMost_iff, THEN conjunct1] bounds[of m, unfolded m_def atLeastAtMost_iff, THEN conjunct2]
have "¦arctan x - (∑i<n. (?c x i))¦ ≤ (∑i<n. (?c x i)) - (∑i<n+1. (?c x i))" by auto
also have "… = - ?c x n" by auto
also have "… = ?a x n" unfolding sgn_neg a_pos by auto
finally show ?thesis .
qed
qed
hence "∀x ∈ { 0 <..< 1 }. 0 ≤ ?a x n - ?diff x n" by auto
moreover have "isCont (λ x. ?a x n - ?diff x n) x" for x
unfolding diff_conv_add_uminus divide_inverse
by (auto intro!: isCont_add isCont_rabs continuous_ident isCont_minus isCont_arctan
continuous_at_within_inverse isCont_mult isCont_power continuous_const isCont_sum
simp del: add_uminus_conv_diff)
ultimately have "0 ≤ ?a 1 n - ?diff 1 n"
by (rule LIM_less_bound)
then show ?thesis by auto
qed
have "?a 1 ⇢ 0"
unfolding tendsto_rabs_zero_iff power_one divide_inverse One_nat_def
by (auto intro!: tendsto_mult LIMSEQ_linear LIMSEQ_inverse_real_of_nat simp del: of_nat_Suc)
have "?diff 1 ⇢ 0"
proof (rule LIMSEQ_I)
fix r :: real
assume "0 < r"
obtain N :: nat where N_I: "N ≤ n ⟹ ?a 1 n < r" for n
using LIMSEQ_D[OF ‹?a 1 ⇢ 0› ‹0 < r›] by auto
have "norm (?diff 1 n - 0) < r" if "N ≤ n" for n
using ‹?diff 1 n ≤ ?a 1 n› N_I[OF that] by auto
then show "∃N. ∀ n ≥ N. norm (?diff 1 n - 0) < r" by blast
qed
from this [unfolded tendsto_rabs_zero_iff, THEN tendsto_add [OF _ tendsto_const], of "- arctan 1", THEN tendsto_minus]
have "(?c 1) sums (arctan 1)" unfolding sums_def by auto
then have "arctan 1 = (∑i. ?c 1 i)" by (rule sums_unique)
show ?thesis
proof (cases "x = 1")
case True
then show ?thesis by (simp add: ‹arctan 1 = (∑ i. ?c 1 i)›)
next
case False
then have "x = -1" using ‹¦x¦ = 1› by auto
have "- (pi/2) < 0" using pi_gt_zero by auto
have "- (2 * pi) < 0" using pi_gt_zero by auto
have c_minus_minus: "?c (- 1) i = - ?c 1 i" for i by auto
have "arctan (- 1) = arctan (tan (-(pi/4)))"
unfolding tan_45 tan_minus ..
also have "… = - (pi/4)"
by (rule arctan_tan) (auto simp: order_less_trans[OF ‹- (pi/2) < 0› pi_gt_zero])
also have "… = - (arctan (tan (pi/4)))"
unfolding neg_equal_iff_equal
by (rule arctan_tan[symmetric]) (auto simp: order_less_trans[OF ‹- (2 * pi) < 0› pi_gt_zero])
also have "… = - (arctan 1)"
unfolding tan_45 ..
also have "… = - (∑ i. ?c 1 i)"
using ‹arctan 1 = (∑ i. ?c 1 i)› by auto
also have "… = (∑ i. ?c (- 1) i)"
using suminf_minus[OF sums_summable[OF ‹(?c 1) sums (arctan 1)›]]
unfolding c_minus_minus by auto
finally show ?thesis using ‹x = -1› by auto
qed
qed
qed
lemma arctan_half: "arctan x = 2 * arctan (x / (1 + sqrt(1 + x⇧2)))"
for x :: real
proof -
obtain y where low: "- (pi/2) < y" and high: "y < pi/2" and y_eq: "tan y = x"
using tan_total by blast
then have low2: "- (pi/2) < y / 2" and high2: "y / 2 < pi/2"
by auto
have "0 < cos y" by (rule cos_gt_zero_pi[OF low high])
then have "cos y ≠ 0" and cos_sqrt: "sqrt ((cos y)⇧2) = cos y"
by auto
have "1 + (tan y)⇧2 = 1 + (sin y)⇧2 / (cos y)⇧2"
unfolding tan_def power_divide ..
also have "… = (cos y)⇧2 / (cos y)⇧2 + (sin y)⇧2 / (cos y)⇧2"
using ‹cos y ≠ 0› by auto
also have "… = 1 / (cos y)⇧2"
unfolding add_divide_distrib[symmetric] sin_cos_squared_add2 ..
finally have "1 + (tan y)⇧2 = 1 / (cos y)⇧2" .
have "sin y / (cos y + 1) = tan y / ((cos y + 1) / cos y)"
unfolding tan_def using ‹cos y ≠ 0› by (simp add: field_simps)
also have "… = tan y / (1 + 1 / cos y)"
using ‹cos y ≠ 0› unfolding add_divide_distrib by auto
also have "… = tan y / (1 + 1 / sqrt ((cos y)⇧2))"
unfolding cos_sqrt ..
also have "… = tan y / (1 + sqrt (1 / (cos y)⇧2))"
unfolding real_sqrt_divide by auto
finally have eq: "sin y / (cos y + 1) = tan y / (1 + sqrt(1 + (tan y)⇧2))"
unfolding ‹1 + (tan y)⇧2 = 1 / (cos y)⇧2› .
have "arctan x = y"
using arctan_tan low high y_eq by auto
also have "… = 2 * (arctan (tan (y/2)))"
using arctan_tan[OF low2 high2] by auto
also have "… = 2 * (arctan (sin y / (cos y + 1)))"
unfolding tan_half by auto
finally show ?thesis
unfolding eq ‹tan y = x› .
qed
lemma arctan_monotone: "x < y ⟹ arctan x < arctan y"
by (simp only: arctan_less_iff)
lemma arctan_monotone': "x ≤ y ⟹ arctan x ≤ arctan y"
by (simp only: arctan_le_iff)
lemma arctan_inverse:
assumes "x ≠ 0"
shows "arctan (1 / x) = sgn x * pi/2 - arctan x"
proof (rule arctan_unique)
have §: "x > 0 ⟹ arctan x < pi"
using arctan_bounded [of x] by linarith
show "- (pi/2) < sgn x * pi/2 - arctan x"
using assms by (auto simp: sgn_real_def arctan algebra_simps §)
show "sgn x * pi/2 - arctan x < pi/2"
using arctan_bounded [of "- x"] assms
by (auto simp: algebra_simps sgn_real_def arctan_minus)
show "tan (sgn x * pi/2 - arctan x) = 1 / x"
unfolding tan_inverse [of "arctan x", unfolded tan_arctan] sgn_real_def
by (simp add: tan_def cos_arctan sin_arctan sin_diff cos_diff)
qed
theorem pi_series: "pi/4 = (∑k. (-1)^k * 1 / real (k * 2 + 1))"
(is "_ = ?SUM")
proof -
have "pi/4 = arctan 1"
using arctan_one by auto
also have "… = ?SUM"
using arctan_series[of 1] by auto
finally show ?thesis by auto
qed
subsection ‹Existence of Polar Coordinates›
lemma cos_x_y_le_one: "¦x / sqrt (x⇧2 + y⇧2)¦ ≤ 1"
by (rule power2_le_imp_le [OF _ zero_le_one])
(simp add: power_divide divide_le_eq not_sum_power2_lt_zero)
lemma polar_Ex: "∃r::real. ∃a. x = r * cos a ∧ y = r * sin a"
proof -
have polar_ex1: "∃r a. x = r * cos a ∧ y = r * sin a" if "0 < y" for y
proof -
have "x = sqrt (x⇧2 + y⇧2) * cos (arccos (x / sqrt (x⇧2 + y⇧2)))"
by (simp add: cos_arccos_abs [OF cos_x_y_le_one])
moreover have "y = sqrt (x⇧2 + y⇧2) * sin (arccos (x / sqrt (x⇧2 + y⇧2)))"
using that
by (simp add: sin_arccos_abs [OF cos_x_y_le_one] power_divide right_diff_distrib flip: real_sqrt_mult)
ultimately show ?thesis
by blast
qed
show ?thesis
proof (cases "0::real" y rule: linorder_cases)
case less
then show ?thesis
by (rule polar_ex1)
next
case equal
then show ?thesis
by (force simp: intro!: cos_zero sin_zero)
next
case greater
with polar_ex1 [where y="-y"] show ?thesis
by auto (metis cos_minus minus_minus minus_mult_right sin_minus)
qed
qed
subsection ‹Basics about polynomial functions: products, extremal behaviour and root counts›
lemma pairs_le_eq_Sigma: "{(i, j). i + j ≤ m} = Sigma (atMost m) (λr. atMost (m - r))"
for m :: nat
by auto
lemma sum_up_index_split: "(∑k≤m + n. f k) = (∑k≤m. f k) + (∑k = Suc m..m + n. f k)"
by (metis atLeast0AtMost Suc_eq_plus1 le0 sum.ub_add_nat)
lemma Sigma_interval_disjoint: "(SIGMA i:A. {..v i}) ∩ (SIGMA i:A.{v i<..w}) = {}"
for w :: "'a::order"
by auto
lemma product_atMost_eq_Un: "A × {..m} = (SIGMA i:A.{..m - i}) ∪ (SIGMA i:A.{m - i<..m})"
for m :: nat
by auto
lemma polynomial_product:
fixes x :: "'a::idom"
assumes m: "⋀i. i > m ⟹ a i = 0"
and n: "⋀j. j > n ⟹ b j = 0"
shows "(∑i≤m. (a i) * x ^ i) * (∑j≤n. (b j) * x ^ j) =
(∑r≤m + n. (∑k≤r. (a k) * (b (r - k))) * x ^ r)"
proof -
have "⋀i j. ⟦m + n - i < j; a i ≠ 0⟧ ⟹ b j = 0"
by (meson le_add_diff leI le_less_trans m n)
then have §: "(∑(i,j)∈(SIGMA i:{..m+n}. {m+n - i<..m+n}). a i * x ^ i * (b j * x ^ j)) = 0"
by (clarsimp simp add: sum_Un Sigma_interval_disjoint intro!: sum.neutral)
have "(∑i≤m. (a i) * x ^ i) * (∑j≤n. (b j) * x ^ j) = (∑i≤m. ∑j≤n. (a i * x ^ i) * (b j * x ^ j))"
by (rule sum_product)
also have "… = (∑i≤m + n. ∑j≤n + m. a i * x ^ i * (b j * x ^ j))"
using assms by (auto simp: sum_up_index_split)
also have "… = (∑r≤m + n. ∑j≤m + n - r. a r * x ^ r * (b j * x ^ j))"
by (simp add: add_ac sum.Sigma product_atMost_eq_Un sum_Un Sigma_interval_disjoint §)
also have "… = (∑(i,j)∈{(i,j). i+j ≤ m+n}. (a i * x ^ i) * (b j * x ^ j))"
by (auto simp: pairs_le_eq_Sigma sum.Sigma)
also have "... = (∑k≤m + n. ∑i≤k. a i * x ^ i * (b (k - i) * x ^ (k - i)))"
by (rule sum.triangle_reindex_eq)
also have "… = (∑r≤m + n. (∑k≤r. (a k) * (b (r - k))) * x ^ r)"
by (auto simp: algebra_simps sum_distrib_left simp flip: power_add intro!: sum.cong)
finally show ?thesis .
qed
lemma polynomial_product_nat:
fixes x :: nat
assumes m: "⋀i. i > m ⟹ a i = 0"
and n: "⋀j. j > n ⟹ b j = 0"
shows "(∑i≤m. (a i) * x ^ i) * (∑j≤n. (b j) * x ^ j) =
(∑r≤m + n. (∑k≤r. (a k) * (b (r - k))) * x ^ r)"
using polynomial_product [of m a n b x] assms
by (simp only: of_nat_mult [symmetric] of_nat_power [symmetric]
of_nat_eq_iff Int.int_sum [symmetric])
lemma polyfun_diff:
fixes x :: "'a::idom"
assumes "1 ≤ n"
shows "(∑i≤n. a i * x^i) - (∑i≤n. a i * y^i) =
(x - y) * (∑j<n. (∑i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
proof -
have h: "bij_betw (λ(i,j). (j,i)) ((SIGMA i : atMost n. lessThan i)) (SIGMA j : lessThan n. {Suc j..n})"
by (auto simp: bij_betw_def inj_on_def)
have "(∑i≤n. a i * x^i) - (∑i≤n. a i * y^i) = (∑i≤n. a i * (x^i - y^i))"
by (simp add: right_diff_distrib sum_subtractf)
also have "… = (∑i≤n. a i * (x - y) * (∑j<i. y^(i - Suc j) * x^j))"
by (simp add: power_diff_sumr2 mult.assoc)
also have "… = (∑i≤n. ∑j<i. a i * (x - y) * (y^(i - Suc j) * x^j))"
by (simp add: sum_distrib_left)
also have "… = (∑(i,j) ∈ (SIGMA i : atMost n. lessThan i). a i * (x - y) * (y^(i - Suc j) * x^j))"
by (simp add: sum.Sigma)
also have "… = (∑(j,i) ∈ (SIGMA j : lessThan n. {Suc j..n}). a i * (x - y) * (y^(i - Suc j) * x^j))"
by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
also have "… = (∑j<n. ∑i=Suc j..n. a i * (x - y) * (y^(i - Suc j) * x^j))"
by (simp add: sum.Sigma)
also have "… = (x - y) * (∑j<n. (∑i=Suc j..n. a i * y^(i - j - 1)) * x^j)"
by (simp add: sum_distrib_left mult_ac)
finally show ?thesis .
qed
lemma polyfun_diff_alt:
fixes x :: "'a::idom"
assumes "1 ≤ n"
shows "(∑i≤n. a i * x^i) - (∑i≤n. a i * y^i) =
(x - y) * ((∑j<n. ∑k<n-j. a(j + k + 1) * y^k * x^j))"
proof -
have "(∑i=Suc j..n. a i * y^(i - j - 1)) = (∑k<n-j. a(j+k+1) * y^k)"
if "j < n" for j :: nat
proof -
have "⋀k. k < n - j ⟹ k ∈ (λi. i - Suc j) ` {Suc j..n}"
by (rule_tac x="k + Suc j" in image_eqI, auto)
then have h: "bij_betw (λi. i - (j + 1)) {Suc j..n} (lessThan (n-j))"
by (auto simp: bij_betw_def inj_on_def)
then show ?thesis
by (auto simp: sum.reindex_bij_betw [OF h, symmetric] intro: sum.cong_simp)
qed
then show ?thesis
by (simp add: polyfun_diff [OF assms] sum_distrib_right)
qed
lemma polyfun_linear_factor:
fixes a :: "'a::idom"
shows "∃b. ∀z. (∑i≤n. c(i) * z^i) = (z - a) * (∑i<n. b(i) * z^i) + (∑i≤n. c(i) * a^i)"
proof (cases "n = 0")
case True then show ?thesis
by simp
next
case False
have "(∃b. ∀z. (∑i≤n. c i * z^i) = (z - a) * (∑i<n. b i * z^i) + (∑i≤n. c i * a^i)) ⟷
(∃b. ∀z. (∑i≤n. c i * z^i) - (∑i≤n. c i * a^i) = (z - a) * (∑i<n. b i * z^i))"
by (simp add: algebra_simps)
also have "… ⟷
(∃b. ∀z. (z - a) * (∑j<n. (∑i = Suc j..n. c i * a^(i - Suc j)) * z^j) =
(z - a) * (∑i<n. b i * z^i))"
using False by (simp add: polyfun_diff)
also have "… = True" by auto
finally show ?thesis
by simp
qed
lemma polyfun_linear_factor_root:
fixes a :: "'a::idom"
assumes "(∑i≤n. c(i) * a^i) = 0"
obtains b where "⋀z. (∑i≤n. c i * z^i) = (z - a) * (∑i<n. b i * z^i)"
using polyfun_linear_factor [of c n a] assms by auto
lemma isCont_polynom: "isCont (λw. ∑i≤n. c i * w^i) a"
for c :: "nat ⇒ 'a::real_normed_div_algebra"
by simp
lemma zero_polynom_imp_zero_coeffs:
fixes c :: "nat ⇒ 'a::{ab_semigroup_mult,real_normed_div_algebra}"
assumes "⋀w. (∑i≤n. c i * w^i) = 0" "k ≤ n"
shows "c k = 0"
using assms
proof (induction n arbitrary: c k)
case 0
then show ?case
by simp
next
case (Suc n c k)
have [simp]: "c 0 = 0" using Suc.prems(1) [of 0]
by simp
have "(∑i≤Suc n. c i * w^i) = w * (∑i≤n. c (Suc i) * w^i)" for w
proof -
have "(∑i≤Suc n. c i * w^i) = (∑i≤n. c (Suc i) * w ^ Suc i)"
unfolding Set_Interval.sum.atMost_Suc_shift
by simp
also have "… = w * (∑i≤n. c (Suc i) * w^i)"
by (simp add: sum_distrib_left ac_simps)
finally show ?thesis .
qed
then have w: "⋀w. w ≠ 0 ⟹ (∑i≤n. c (Suc i) * w^i) = 0"
using Suc by auto
then have "(λh. ∑i≤n. c (Suc i) * h^i) ─0→ 0"
by (simp cong: LIM_cong)
then have "(∑i≤n. c (Suc i) * 0^i) = 0"
using isCont_polynom [of 0 "λi. c (Suc i)" n] LIM_unique
by (force simp: Limits.isCont_iff)
then have "⋀w. (∑i≤n. c (Suc i) * w^i) = 0"
using w by metis
then have "⋀i. i ≤ n ⟹ c (Suc i) = 0"
using Suc.IH [of "λi. c (Suc i)"] by blast
then show ?case using ‹k ≤ Suc n›
by (cases k) auto
qed
lemma polyfun_rootbound:
fixes c :: "nat ⇒ 'a::{idom,real_normed_div_algebra}"
assumes "c k ≠ 0" "k≤n"
shows "finite {z. (∑i≤n. c(i) * z^i) = 0} ∧ card {z. (∑i≤n. c(i) * z^i) = 0} ≤ n"
using assms
proof (induction n arbitrary: c k)
case 0
then show ?case
by simp
next
case (Suc m c k)
let ?succase = ?case
show ?case
proof (cases "{z. (∑i≤Suc m. c(i) * z^i) = 0} = {}")
case True
then show ?succase
by simp
next
case False
then obtain z0 where z0: "(∑i≤Suc m. c(i) * z0^i) = 0"
by blast
then obtain b where b: "⋀w. (∑i≤Suc m. c i * w^i) = (w - z0) * (∑i≤m. b i * w^i)"
using polyfun_linear_factor_root [OF z0, unfolded lessThan_Suc_atMost]
by blast
then have eq: "{z. (∑i≤Suc m. c i * z^i) = 0} = insert z0 {z. (∑i≤m. b i * z^i) = 0}"
by auto
have "¬ (∀k≤m. b k = 0)"
proof
assume [simp]: "∀k≤m. b k = 0"
then have "⋀w. (∑i≤m. b i * w^i) = 0"
by simp
then have "⋀w. (∑i≤Suc m. c i * w^i) = 0"
using b by simp
then have "⋀k. k ≤ Suc m ⟹ c k = 0"
using zero_polynom_imp_zero_coeffs by blast
then show False using Suc.prems by blast
qed
then obtain k' where bk': "b k' ≠ 0" "k' ≤ m"
by blast
show ?succase
using Suc.IH [of b k'] bk'
by (simp add: eq card_insert_if del: sum.atMost_Suc)
qed
qed
lemma
fixes c :: "nat ⇒ 'a::{idom,real_normed_div_algebra}"
assumes "c k ≠ 0" "k≤n"
shows polyfun_roots_finite: "finite {z. (∑i≤n. c(i) * z^i) = 0}"
and polyfun_roots_card: "card {z. (∑i≤n. c(i) * z^i) = 0} ≤ n"
using polyfun_rootbound assms by auto
lemma polyfun_finite_roots:
fixes c :: "nat ⇒ 'a::{idom,real_normed_div_algebra}"
shows "finite {x. (∑i≤n. c i * x^i) = 0} ⟷ (∃i≤n. c i ≠ 0)"
(is "?lhs = ?rhs")
proof
assume ?lhs
moreover have "¬ finite {x. (∑i≤n. c i * x^i) = 0}" if "∀i≤n. c i = 0"
proof -
from that have "⋀x. (∑i≤n. c i * x^i) = 0"
by simp
then show ?thesis
using ex_new_if_finite [OF infinite_UNIV_char_0 [where 'a='a]]
by auto
qed
ultimately show ?rhs by metis
next
assume ?rhs
with polyfun_rootbound show ?lhs by blast
qed
lemma polyfun_eq_0: "(∀x. (∑i≤n. c i * x^i) = 0) ⟷ (∀i≤n. c i = 0)"
for c :: "nat ⇒ 'a::{idom,real_normed_div_algebra}"
using zero_polynom_imp_zero_coeffs by auto
lemma polyfun_eq_coeffs: "(∀x. (∑i≤n. c i * x^i) = (∑i≤n. d i * x^i)) ⟷ (∀i≤n. c i = d i)"
for c :: "nat ⇒ 'a::{idom,real_normed_div_algebra}"
proof -
have "(∀x. (∑i≤n. c i * x^i) = (∑i≤n. d i * x^i)) ⟷ (∀x. (∑i≤n. (c i - d i) * x^i) = 0)"
by (simp add: left_diff_distrib Groups_Big.sum_subtractf)
also have "… ⟷ (∀i≤n. c i - d i = 0)"
by (rule polyfun_eq_0)
finally show ?thesis
by simp
qed
lemma polyfun_eq_const:
fixes c :: "nat ⇒ 'a::{idom,real_normed_div_algebra}"
shows "(∀x. (∑i≤n. c i * x^i) = k) ⟷ c 0 = k ∧ (∀i ∈ {1..n}. c i = 0)"
(is "?lhs = ?rhs")
proof -
have *: "∀x. (∑i≤n. (if i=0 then k else 0) * x^i) = k"
by (induct n) auto
show ?thesis
proof
assume ?lhs
with * have "(∀i≤n. c i = (if i=0 then k else 0))"
by (simp add: polyfun_eq_coeffs [symmetric])
then show ?rhs by simp
next
assume ?rhs
then show ?lhs by (induct n) auto
qed
qed
lemma root_polyfun:
fixes z :: "'a::idom"
assumes "1 ≤ n"
shows "z^n = a ⟷ (∑i≤n. (if i = 0 then -a else if i=n then 1 else 0) * z^i) = 0"
using assms by (cases n) (simp_all add: sum.atLeast_Suc_atMost atLeast0AtMost [symmetric])
lemma
assumes "SORT_CONSTRAINT('a::{idom,real_normed_div_algebra})"
and "1 ≤ n"
shows finite_roots_unity: "finite {z::'a. z^n = 1}"
and card_roots_unity: "card {z::'a. z^n = 1} ≤ n"
using polyfun_rootbound [of "λi. if i = 0 then -1 else if i=n then 1 else 0" n n] assms(2)
by (auto simp: root_polyfun [OF assms(2)])
subsection ‹Hyperbolic functions›
definition sinh :: "'a :: {banach, real_normed_algebra_1} ⇒ 'a" where
"sinh x = (exp x - exp (-x)) /⇩R 2"
definition cosh :: "'a :: {banach, real_normed_algebra_1} ⇒ 'a" where
"cosh x = (exp x + exp (-x)) /⇩R 2"
definition tanh :: "'a :: {banach, real_normed_field} ⇒ 'a" where
"tanh x = sinh x / cosh x"
definition arsinh :: "'a :: {banach, real_normed_algebra_1, ln} ⇒ 'a" where
"arsinh x = ln (x + (x^2 + 1) powr of_real (1/2))"
definition arcosh :: "'a :: {banach, real_normed_algebra_1, ln} ⇒ 'a" where
"arcosh x = ln (x + (x^2 - 1) powr of_real (1/2))"
definition artanh :: "'a :: {banach, real_normed_field, ln} ⇒ 'a" where
"artanh x = ln ((1 + x) / (1 - x)) / 2"
lemma arsinh_0 [simp]: "arsinh 0 = 0"
by (simp add: arsinh_def)
lemma arcosh_1 [simp]: "arcosh 1 = 0"
by (simp add: arcosh_def)
lemma artanh_0 [simp]: "artanh 0 = 0"
by (simp add: artanh_def)
lemma tanh_altdef:
"tanh x = (exp x - exp (-x)) / (exp x + exp (-x))"
proof -
have "tanh x = (2 *⇩R sinh x) / (2 *⇩R cosh x)"
by (simp add: tanh_def scaleR_conv_of_real)
also have "2 *⇩R sinh x = exp x - exp (-x)"
by (simp add: sinh_def)
also have "2 *⇩R cosh x = exp x + exp (-x)"
by (simp add: cosh_def)
finally show ?thesis .
qed
lemma tanh_real_altdef: "tanh (x::real) = (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))"
proof -
have [simp]: "exp (2 * x) = exp x * exp x" "exp (x * 2) = exp x * exp x"
by (subst exp_add [symmetric]; simp)+
have "tanh x = (2 * exp (-x) * sinh x) / (2 * exp (-x) * cosh x)"
by (simp add: tanh_def)
also have "2 * exp (-x) * sinh x = 1 - exp (-2*x)"
by (simp add: exp_minus field_simps sinh_def)
also have "2 * exp (-x) * cosh x = 1 + exp (-2*x)"
by (simp add: exp_minus field_simps cosh_def)
finally show ?thesis .
qed
lemma sinh_converges: "(λn. if even n then 0 else x ^ n /⇩R fact n) sums sinh x"
proof -
have "(λn. (x ^ n /⇩R fact n - (-x) ^ n /⇩R fact n) /⇩R 2) sums sinh x"
unfolding sinh_def by (intro sums_scaleR_right sums_diff exp_converges)
also have "(λn. (x ^ n /⇩R fact n - (-x) ^ n /⇩R fact n) /⇩R 2) =
(λn. if even n then 0 else x ^ n /⇩R fact n)" by auto
finally show ?thesis .
qed
lemma cosh_converges: "(λn. if even n then x ^ n /⇩R fact n else 0) sums cosh x"
proof -
have "(λn. (x ^ n /⇩R fact n + (-x) ^ n /⇩R fact n) /⇩R 2) sums cosh x"
unfolding cosh_def by (intro sums_scaleR_right sums_add exp_converges)
also have "(λn. (x ^ n /⇩R fact n + (-x) ^ n /⇩R fact n) /⇩R 2) =
(λn. if even n then x ^ n /⇩R fact n else 0)" by auto
finally show ?thesis .
qed
lemma sinh_0 [simp]: "sinh 0 = 0"
by (simp add: sinh_def)
lemma cosh_0 [simp]: "cosh 0 = 1"
proof -
have "cosh 0 = (1/2) *⇩R (1 + 1)" by (simp add: cosh_def)
also have "… = 1" by (rule scaleR_half_double)
finally show ?thesis .
qed
lemma tanh_0 [simp]: "tanh 0 = 0"
by (simp add: tanh_def)
lemma sinh_minus [simp]: "sinh (- x) = -sinh x"
by (simp add: sinh_def algebra_simps)
lemma cosh_minus [simp]: "cosh (- x) = cosh x"
by (simp add: cosh_def algebra_simps)
lemma tanh_minus [simp]: "tanh (-x) = -tanh x"
by (simp add: tanh_def)
lemma sinh_ln_real: "x > 0 ⟹ sinh (ln x :: real) = (x - inverse x) / 2"
by (simp add: sinh_def exp_minus)
lemma cosh_ln_real: "x > 0 ⟹ cosh (ln x :: real) = (x + inverse x) / 2"
by (simp add: cosh_def exp_minus)
lemma tanh_ln_real:
"tanh (ln x :: real) = (x ^ 2 - 1) / (x ^ 2 + 1)" if "x > 0"
proof -
from that have "(x * 2 - inverse x * 2) * (x⇧2 + 1) =
(x⇧2 - 1) * (2 * x + 2 * inverse x)"
by (simp add: field_simps power2_eq_square)
moreover have "x⇧2 + 1 > 0"
using that by (simp add: ac_simps add_pos_nonneg)
moreover have "2 * x + 2 * inverse x > 0"
using that by (simp add: add_pos_pos)
ultimately have "(x * 2 - inverse x * 2) /
(2 * x + 2 * inverse x) =
(x⇧2 - 1) / (x⇧2 + 1)"
by (simp add: frac_eq_eq)
with that show ?thesis
by (simp add: tanh_def sinh_ln_real cosh_ln_real)
qed
lemma has_field_derivative_scaleR_right [derivative_intros]:
"(f has_field_derivative D) F ⟹ ((λx. c *⇩R f x) has_field_derivative (c *⇩R D)) F"
unfolding has_field_derivative_def
using has_derivative_scaleR_right[of f "λx. D * x" F c]
by (simp add: mult_scaleR_left [symmetric] del: mult_scaleR_left)
lemma has_field_derivative_sinh [THEN DERIV_chain2, derivative_intros]:
"(sinh has_field_derivative cosh x) (at (x :: 'a :: {banach, real_normed_field}))"
unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
lemma has_field_derivative_cosh [THEN DERIV_chain2, derivative_intros]:
"(cosh has_field_derivative sinh x) (at (x :: 'a :: {banach, real_normed_field}))"
unfolding sinh_def cosh_def by (auto intro!: derivative_eq_intros)
lemma has_field_derivative_tanh [THEN DERIV_chain2, derivative_intros]:
"cosh x ≠ 0 ⟹ (tanh has_field_derivative 1 - tanh x ^ 2)
(at (x :: 'a :: {banach, real_normed_field}))"
unfolding tanh_def by (auto intro!: derivative_eq_intros simp: power2_eq_square field_split_simps)
lemma has_derivative_sinh [derivative_intros]:
fixes g :: "'a ⇒ ('a :: {banach, real_normed_field})"
assumes "(g has_derivative (λx. Db * x)) (at x within s)"
shows "((λx. sinh (g x)) has_derivative (λy. (cosh (g x) * Db) * y)) (at x within s)"
proof -
have "((λx. - g x) has_derivative (λy. -(Db * y))) (at x within s)"
using assms by (intro derivative_intros)
also have "(λy. -(Db * y)) = (λx. (-Db) * x)" by (simp add: fun_eq_iff)
finally have "((λx. sinh (g x)) has_derivative
(λy. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /⇩R 2)) (at x within s)"
unfolding sinh_def by (intro derivative_intros assms)
also have "(λy. (exp (g x) * Db * y - exp (-g x) * (-Db) * y) /⇩R 2) = (λy. (cosh (g x) * Db) * y)"
by (simp add: fun_eq_iff cosh_def algebra_simps)
finally show ?thesis .
qed
lemma has_derivative_cosh [derivative_intros]:
fixes g :: "'a ⇒ ('a :: {banach, real_normed_field})"
assumes "(g has_derivative (λy. Db * y)) (at x within s)"
shows "((λx. cosh (g x)) has_derivative (λy. (sinh (g x) * Db) * y)) (at x within s)"
proof -
have "((λx. - g x) has_derivative (λy. -(Db * y))) (at x within s)"
using assms by (intro derivative_intros)
also have "(λy. -(Db * y)) = (λy. (-Db) * y)" by (simp add: fun_eq_iff)
finally have "((λx. cosh (g x)) has_derivative
(λy. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /⇩R 2)) (at x within s)"
unfolding cosh_def by (intro derivative_intros assms)
also have "(λy. (exp (g x) * Db * y + exp (-g x) * (-Db) * y) /⇩R 2) = (λy. (sinh (g x) * Db) * y)"
by (simp add: fun_eq_iff sinh_def algebra_simps)
finally show ?thesis .
qed
lemma sinh_plus_cosh: "sinh x + cosh x = exp x"
proof -
have "sinh x + cosh x = (1/2) *⇩R (exp x + exp x)"
by (simp add: sinh_def cosh_def algebra_simps)
also have "… = exp x" by (rule scaleR_half_double)
finally show ?thesis .
qed
lemma cosh_plus_sinh: "cosh x + sinh x = exp x"
by (subst add.commute) (rule sinh_plus_cosh)
lemma cosh_minus_sinh: "cosh x - sinh x = exp (-x)"
proof -
have "cosh x - sinh x = (1/2) *⇩R (exp (-x) + exp (-x))"
by (simp add: sinh_def cosh_def algebra_simps)
also have "… = exp (-x)" by (rule scaleR_half_double)
finally show ?thesis .
qed
lemma sinh_minus_cosh: "sinh x - cosh x = -exp (-x)"
using cosh_minus_sinh[of x] by (simp add: algebra_simps)
context
fixes x :: "'a :: {real_normed_field, banach}"
begin
lemma sinh_zero_iff: "sinh x = 0 ⟷ exp x ∈ {1, -1}"
by (auto simp: sinh_def field_simps exp_minus power2_eq_square square_eq_1_iff)
lemma cosh_zero_iff: "cosh x = 0 ⟷ exp x ^ 2 = -1"
by (auto simp: cosh_def exp_minus field_simps power2_eq_square eq_neg_iff_add_eq_0)
lemma cosh_square_eq: "cosh x ^ 2 = sinh x ^ 2 + 1"
by (simp add: cosh_def sinh_def algebra_simps power2_eq_square exp_add [symmetric]
scaleR_conv_of_real)
lemma sinh_square_eq: "sinh x ^ 2 = cosh x ^ 2 - 1"
by (simp add: cosh_square_eq)
lemma hyperbolic_pythagoras: "cosh x ^ 2 - sinh x ^ 2 = 1"
by (simp add: cosh_square_eq)
lemma sinh_add: "sinh (x + y) = sinh x * cosh y + cosh x * sinh y"
by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
lemma sinh_diff: "sinh (x - y) = sinh x * cosh y - cosh x * sinh y"
by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
lemma cosh_add: "cosh (x + y) = cosh x * cosh y + sinh x * sinh y"
by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
lemma cosh_diff: "cosh (x - y) = cosh x * cosh y - sinh x * sinh y"
by (simp add: sinh_def cosh_def algebra_simps scaleR_conv_of_real exp_add [symmetric])
lemma tanh_add:
"tanh (x + y) = (tanh x + tanh y) / (1 + tanh x * tanh y)"
if "cosh x ≠ 0" "cosh y ≠ 0"
proof -
have "(sinh x * cosh y + cosh x * sinh y) * (1 + sinh x * sinh y / (cosh x * cosh y)) =
(cosh x * cosh y + sinh x * sinh y) * ((sinh x * cosh y + sinh y * cosh x) / (cosh y * cosh x))"
using that by (simp add: field_split_simps)
also have "(sinh x * cosh y + sinh y * cosh x) / (cosh y * cosh x) = sinh x / cosh x + sinh y / cosh y"
using that by (simp add: field_split_simps)
finally have "(sinh x * cosh y + cosh x * sinh y) * (1 + sinh x * sinh y / (cosh x * cosh y)) =
(sinh x / cosh x + sinh y / cosh y) * (cosh x * cosh y + sinh x * sinh y)"
by simp
then show ?thesis
using that by (auto simp add: tanh_def sinh_add cosh_add eq_divide_eq)
(simp_all add: field_split_simps)
qed
lemma sinh_double: "sinh (2 * x) = 2 * sinh x * cosh x"
using sinh_add[of x] by simp
lemma cosh_double: "cosh (2 * x) = cosh x ^ 2 + sinh x ^ 2"
using cosh_add[of x] by (simp add: power2_eq_square)
end
lemma sinh_field_def: "sinh z = (exp z - exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
by (simp add: sinh_def scaleR_conv_of_real)
lemma cosh_field_def: "cosh z = (exp z + exp (-z)) / (2 :: 'a :: {banach, real_normed_field})"
by (simp add: cosh_def scaleR_conv_of_real)
subsubsection ‹More specific properties of the real functions›
lemma plus_inverse_ge_2:
fixes x :: real
assumes "x > 0"
shows "x + inverse x ≥ 2"
proof -
have "0 ≤ (x - 1) ^ 2" by simp
also have "… = x^2 - 2*x + 1" by (simp add: power2_eq_square algebra_simps)
finally show ?thesis using assms by (simp add: field_simps power2_eq_square)
qed
lemma sinh_real_nonneg_iff [simp]: "sinh (x :: real) ≥ 0 ⟷ x ≥ 0"
by (simp add: sinh_def)
lemma sinh_real_pos_iff [simp]: "sinh (x :: real) > 0 ⟷ x > 0"
by (simp add: sinh_def)
lemma sinh_real_nonpos_iff [simp]: "sinh (x :: real) ≤ 0 ⟷ x ≤ 0"
by (simp add: sinh_def)
lemma sinh_real_neg_iff [simp]: "sinh (x :: real) < 0 ⟷ x < 0"
by (simp add: sinh_def)
lemma cosh_real_ge_1: "cosh (x :: real) ≥ 1"
using plus_inverse_ge_2[of "exp x"] by (simp add: cosh_def exp_minus)
lemma cosh_real_pos [simp]: "cosh (x :: real) > 0"
using cosh_real_ge_1[of x] by simp
lemma cosh_real_nonneg[simp]: "cosh (x :: real) ≥ 0"
using cosh_real_ge_1[of x] by simp
lemma cosh_real_nonzero [simp]: "cosh (x :: real) ≠ 0"
using cosh_real_ge_1[of x] by simp
lemma arsinh_real_def: "arsinh (x::real) = ln (x + sqrt (x^2 + 1))"
by (simp add: arsinh_def powr_half_sqrt)
lemma arcosh_real_def: "x ≥ 1 ⟹ arcosh (x::real) = ln (x + sqrt (x^2 - 1))"
by (simp add: arcosh_def powr_half_sqrt)
lemma arsinh_real_aux: "0 < x + sqrt (x ^ 2 + 1 :: real)"
proof (cases "x < 0")
case True
have "(-x) ^ 2 = x ^ 2" by simp
also have "x ^ 2 < x ^ 2 + 1" by simp
finally have "sqrt ((-x) ^ 2) < sqrt (x ^ 2 + 1)"
by (rule real_sqrt_less_mono)
thus ?thesis using True by simp
qed (auto simp: add_nonneg_pos)
lemma arsinh_minus_real [simp]: "arsinh (-x::real) = -arsinh x"
proof -
have "arsinh (-x) = ln (sqrt (x⇧2 + 1) - x)"
by (simp add: arsinh_real_def)
also have "sqrt (x^2 + 1) - x = inverse (sqrt (x^2 + 1) + x)"
using arsinh_real_aux[of x] by (simp add: field_split_simps algebra_simps power2_eq_square)
also have "ln … = -arsinh x"
using arsinh_real_aux[of x] by (simp add: arsinh_real_def ln_inverse)
finally show ?thesis .
qed
lemma artanh_minus_real [simp]:
assumes "abs x < 1"
shows "artanh (-x::real) = -artanh x"
using assms by (simp add: artanh_def ln_div field_simps)
lemma sinh_less_cosh_real: "sinh (x :: real) < cosh x"
by (simp add: sinh_def cosh_def)
lemma sinh_le_cosh_real: "sinh (x :: real) ≤ cosh x"
by (simp add: sinh_def cosh_def)
lemma tanh_real_lt_1: "tanh (x :: real) < 1"
by (simp add: tanh_def sinh_less_cosh_real)
lemma tanh_real_gt_neg1: "tanh (x :: real) > -1"
proof -
have "- cosh x < sinh x" by (simp add: sinh_def cosh_def field_split_simps)
thus ?thesis by (simp add: tanh_def field_simps)
qed
lemma tanh_real_bounds: "tanh (x :: real) ∈ {-1<..<1}"
using tanh_real_lt_1 tanh_real_gt_neg1 by simp
context
fixes x :: real
begin
lemma arsinh_sinh_real: "arsinh (sinh x) = x"
by (simp add: arsinh_real_def powr_def sinh_square_eq sinh_plus_cosh)
lemma arcosh_cosh_real: "x ≥ 0 ⟹ arcosh (cosh x) = x"
by (simp add: arcosh_real_def powr_def cosh_square_eq cosh_real_ge_1 cosh_plus_sinh)
lemma artanh_tanh_real: "artanh (tanh x) = x"
proof -
have "artanh (tanh x) = ln (cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x))) / 2"
by (simp add: artanh_def tanh_def field_split_simps)
also have "cosh x * (cosh x + sinh x) / (cosh x * (cosh x - sinh x)) =
(cosh x + sinh x) / (cosh x - sinh x)" by simp
also have "… = (exp x)^2"
by (simp add: cosh_plus_sinh cosh_minus_sinh exp_minus field_simps power2_eq_square)
also have "ln ((exp x)^2) / 2 = x" by (simp add: ln_realpow)
finally show ?thesis .
qed
lemma sinh_real_zero_iff [simp]: "sinh x = 0 ⟷ x = 0"
by (metis arsinh_0 arsinh_sinh_real sinh_0)
lemma cosh_real_one_iff [simp]: "cosh x = 1 ⟷ x = 0"
by (smt (verit, best) Transcendental.arcosh_cosh_real cosh_0 cosh_minus)
lemma tanh_real_nonneg_iff [simp]: "tanh x ≥ 0 ⟷ x ≥ 0"
by (simp add: tanh_def field_simps)
lemma tanh_real_pos_iff [simp]: "tanh x > 0 ⟷ x > 0"
by (simp add: tanh_def field_simps)
lemma tanh_real_nonpos_iff [simp]: "tanh x ≤ 0 ⟷ x ≤ 0"
by (simp add: tanh_def field_simps)
lemma tanh_real_neg_iff [simp]: "tanh x < 0 ⟷ x < 0"
by (simp add: tanh_def field_simps)
lemma tanh_real_zero_iff [simp]: "tanh x = 0 ⟷ x = 0"
by (simp add: tanh_def field_simps)
end
lemma sinh_real_strict_mono: "strict_mono (sinh :: real ⇒ real)"
by (rule pos_deriv_imp_strict_mono derivative_intros)+ auto
lemma cosh_real_strict_mono:
assumes "0 ≤ x" and "x < (y::real)"
shows "cosh x < cosh y"
proof -
from assms have "∃z>x. z < y ∧ cosh y - cosh x = (y - x) * sinh z"
by (intro MVT2) (auto dest: connectedD_interval intro!: derivative_eq_intros)
then obtain z where z: "z > x" "z < y" "cosh y - cosh x = (y - x) * sinh z" by blast
note ‹cosh y - cosh x = (y - x) * sinh z›
also from ‹z > x› and assms have "(y - x) * sinh z > 0" by (intro mult_pos_pos) auto
finally show "cosh x < cosh y" by simp
qed
lemma tanh_real_strict_mono: "strict_mono (tanh :: real ⇒ real)"
proof -
have *: "tanh x ^ 2 < 1" for x :: real
using tanh_real_bounds[of x] by (simp add: abs_square_less_1 abs_if)
show ?thesis
by (rule pos_deriv_imp_strict_mono) (insert *, auto intro!: derivative_intros)
qed
lemma sinh_real_abs [simp]: "sinh (abs x :: real) = abs (sinh x)"
by (simp add: abs_if)
lemma cosh_real_abs [simp]: "cosh (abs x :: real) = cosh x"
by (simp add: abs_if)
lemma tanh_real_abs [simp]: "tanh (abs x :: real) = abs (tanh x)"
by (auto simp: abs_if)
lemma sinh_real_eq_iff [simp]: "sinh x = sinh y ⟷ x = (y :: real)"
using sinh_real_strict_mono by (simp add: strict_mono_eq)
lemma tanh_real_eq_iff [simp]: "tanh x = tanh y ⟷ x = (y :: real)"
using tanh_real_strict_mono by (simp add: strict_mono_eq)
lemma cosh_real_eq_iff [simp]: "cosh x = cosh y ⟷ abs x = abs (y :: real)"
proof -
have "cosh x = cosh y ⟷ x = y" if "x ≥ 0" "y ≥ 0" for x y :: real
using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x] that
by (cases x y rule: linorder_cases) auto
from this[of "abs x" "abs y"] show ?thesis by simp
qed
lemma sinh_real_le_iff [simp]: "sinh x ≤ sinh y ⟷ x ≤ (y::real)"
using sinh_real_strict_mono by (simp add: strict_mono_less_eq)
lemma cosh_real_nonneg_le_iff: "x ≥ 0 ⟹ y ≥ 0 ⟹ cosh x ≤ cosh y ⟷ x ≤ (y::real)"
using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
by (cases x y rule: linorder_cases) auto
lemma cosh_real_nonpos_le_iff: "x ≤ 0 ⟹ y ≤ 0 ⟹ cosh x ≤ cosh y ⟷ x ≥ (y::real)"
using cosh_real_nonneg_le_iff[of "-x" "-y"] by simp
lemma tanh_real_le_iff [simp]: "tanh x ≤ tanh y ⟷ x ≤ (y::real)"
using tanh_real_strict_mono by (simp add: strict_mono_less_eq)
lemma sinh_real_less_iff [simp]: "sinh x < sinh y ⟷ x < (y::real)"
using sinh_real_strict_mono by (simp add: strict_mono_less)
lemma cosh_real_nonneg_less_iff: "x ≥ 0 ⟹ y ≥ 0 ⟹ cosh x < cosh y ⟷ x < (y::real)"
using cosh_real_strict_mono[of x y] cosh_real_strict_mono[of y x]
by (cases x y rule: linorder_cases) auto
lemma cosh_real_nonpos_less_iff: "x ≤ 0 ⟹ y ≤ 0 ⟹ cosh x < cosh y ⟷ x > (y::real)"
using cosh_real_nonneg_less_iff[of "-x" "-y"] by simp
lemma tanh_real_less_iff [simp]: "tanh x < tanh y ⟷ x < (y::real)"
using tanh_real_strict_mono by (simp add: strict_mono_less)
subsubsection ‹Limits›
lemma sinh_real_at_top: "filterlim (sinh :: real ⇒ real) at_top at_top"
proof -
have *: "((λx. - exp (- x)) ⤏ (-0::real)) at_top"
by (intro tendsto_minus filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
have "filterlim (λx. (1/2) * (-exp (-x) + exp x) :: real) at_top at_top"
by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
also have "(λx. (1/2) * (-exp (-x) + exp x) :: real) = sinh"
by (simp add: fun_eq_iff sinh_def)
finally show ?thesis .
qed
lemma sinh_real_at_bot: "filterlim (sinh :: real ⇒ real) at_bot at_bot"
proof -
have "filterlim (λx. -sinh x :: real) at_bot at_top"
by (simp add: filterlim_uminus_at_top [symmetric] sinh_real_at_top)
also have "(λx. -sinh x :: real) = (λx. sinh (-x))" by simp
finally show ?thesis by (subst filterlim_at_bot_mirror)
qed
lemma cosh_real_at_top: "filterlim (cosh :: real ⇒ real) at_top at_top"
proof -
have *: "((λx. exp (- x)) ⤏ (0::real)) at_top"
by (intro filterlim_compose[OF exp_at_bot] filterlim_uminus_at_bot_at_top)
have "filterlim (λx. (1/2) * (exp (-x) + exp x) :: real) at_top at_top"
by (rule filterlim_tendsto_pos_mult_at_top[OF _ _
filterlim_tendsto_add_at_top[OF *]] tendsto_const)+ (auto simp: exp_at_top)
also have "(λx. (1/2) * (exp (-x) + exp x) :: real) = cosh"
by (simp add: fun_eq_iff cosh_def)
finally show ?thesis .
qed
lemma cosh_real_at_bot: "filterlim (cosh :: real ⇒ real) at_top at_bot"
proof -
have "filterlim (λx. cosh (-x) :: real) at_top at_top"
by (simp add: cosh_real_at_top)
thus ?thesis by (subst filterlim_at_bot_mirror)
qed
lemma tanh_real_at_top: "(tanh ⤏ (1::real)) at_top"
proof -
have "((λx::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) ⤏ (1 - 0) / (1 + 0)) at_top"
by (intro tendsto_intros filterlim_compose[OF exp_at_bot]
filterlim_tendsto_neg_mult_at_bot[OF tendsto_const] filterlim_ident) auto
also have "(λx::real. (1 - exp (- 2 * x)) / (1 + exp (- 2 * x))) = tanh"
by (rule ext) (simp add: tanh_real_altdef)
finally show ?thesis by simp
qed
lemma tanh_real_at_bot: "(tanh ⤏ (-1::real)) at_bot"
proof -
have "((λx::real. -tanh x) ⤏ -1) at_top"
by (intro tendsto_minus tanh_real_at_top)
also have "(λx. -tanh x :: real) = (λx. tanh (-x))" by simp
finally show ?thesis by (subst filterlim_at_bot_mirror)
qed
subsubsection ‹Properties of the inverse hyperbolic functions›
lemma isCont_sinh: "isCont sinh (x :: 'a :: {real_normed_field, banach})"
unfolding sinh_def [abs_def] by (auto intro!: continuous_intros)
lemma isCont_cosh: "isCont cosh (x :: 'a :: {real_normed_field, banach})"
unfolding cosh_def [abs_def] by (auto intro!: continuous_intros)
lemma isCont_tanh: "cosh x ≠ 0 ⟹ isCont tanh (x :: 'a :: {real_normed_field, banach})"
unfolding tanh_def [abs_def]
by (auto intro!: continuous_intros isCont_divide isCont_sinh isCont_cosh)
lemma continuous_on_sinh [continuous_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
assumes "continuous_on A f"
shows "continuous_on A (λx. sinh (f x))"
unfolding sinh_def using assms by (intro continuous_intros)
lemma continuous_on_cosh [continuous_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
assumes "continuous_on A f"
shows "continuous_on A (λx. cosh (f x))"
unfolding cosh_def using assms by (intro continuous_intros)
lemma continuous_sinh [continuous_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
assumes "continuous F f"
shows "continuous F (λx. sinh (f x))"
unfolding sinh_def using assms by (intro continuous_intros)
lemma continuous_cosh [continuous_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
assumes "continuous F f"
shows "continuous F (λx. cosh (f x))"
unfolding cosh_def using assms by (intro continuous_intros)
lemma continuous_on_tanh [continuous_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
assumes "continuous_on A f" "⋀x. x ∈ A ⟹ cosh (f x) ≠ 0"
shows "continuous_on A (λx. tanh (f x))"
unfolding tanh_def using assms by (intro continuous_intros) auto
lemma continuous_at_within_tanh [continuous_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
assumes "continuous (at x within A) f" "cosh (f x) ≠ 0"
shows "continuous (at x within A) (λx. tanh (f x))"
unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
lemma continuous_tanh [continuous_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
assumes "continuous F f" "cosh (f (Lim F (λx. x))) ≠ 0"
shows "continuous F (λx. tanh (f x))"
unfolding tanh_def using assms by (intro continuous_intros continuous_divide) auto
lemma tendsto_sinh [tendsto_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
shows "(f ⤏ a) F ⟹ ((λx. sinh (f x)) ⤏ sinh a) F"
by (rule isCont_tendsto_compose [OF isCont_sinh])
lemma tendsto_cosh [tendsto_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
shows "(f ⤏ a) F ⟹ ((λx. cosh (f x)) ⤏ cosh a) F"
by (rule isCont_tendsto_compose [OF isCont_cosh])
lemma tendsto_tanh [tendsto_intros]:
fixes f :: "_ ⇒'a::{real_normed_field,banach}"
shows "(f ⤏ a) F ⟹ cosh a ≠ 0 ⟹ ((λx. tanh (f x)) ⤏ tanh a) F"
by (rule isCont_tendsto_compose [OF isCont_tanh])
lemma arsinh_real_has_field_derivative [derivative_intros]:
fixes x :: real
shows "(arsinh has_field_derivative (1 / (sqrt (x ^ 2 + 1)))) (at x within A)"
proof -
have pos: "1 + x ^ 2 > 0" by (intro add_pos_nonneg) auto
from pos arsinh_real_aux[of x] show ?thesis unfolding arsinh_def [abs_def]
by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt field_split_simps)
qed
lemma arcosh_real_has_field_derivative [derivative_intros]:
fixes x :: real
assumes "x > 1"
shows "(arcosh has_field_derivative (1 / (sqrt (x ^ 2 - 1)))) (at x within A)"
proof -
from assms have "x + sqrt (x⇧2 - 1) > 0" by (simp add: add_pos_pos)
thus ?thesis using assms unfolding arcosh_def [abs_def]
by (auto intro!: derivative_eq_intros
simp: powr_minus powr_half_sqrt field_split_simps power2_eq_1_iff)
qed
lemma artanh_real_has_field_derivative [derivative_intros]:
"(artanh has_field_derivative (1 / (1 - x ^ 2))) (at x within A)" if
"¦x¦ < 1" for x :: real
proof -
from that have "- 1 < x" "x < 1" by linarith+
hence "(artanh has_field_derivative (4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4))
(at x within A)" unfolding artanh_def [abs_def]
by (auto intro!: derivative_eq_intros simp: powr_minus powr_half_sqrt)
also have "(4 - 4 * x) / ((1 + x) * (1 - x) * (1 - x) * 4) = 1 / ((1 + x) * (1 - x))"
using ‹-1 < x› ‹x < 1› by (simp add: frac_eq_eq)
also have "(1 + x) * (1 - x) = 1 - x ^ 2"
by (simp add: algebra_simps power2_eq_square)
finally show ?thesis .
qed
lemma continuous_on_arsinh [continuous_intros]: "continuous_on A (arsinh :: real ⇒ real)"
by (rule DERIV_continuous_on derivative_intros)+
lemma continuous_on_arcosh [continuous_intros]:
assumes "A ⊆ {1..}"
shows "continuous_on A (arcosh :: real ⇒ real)"
proof -
have pos: "x + sqrt (x ^ 2 - 1) > 0" if "x ≥ 1" for x
using that by (intro add_pos_nonneg) auto
show ?thesis
unfolding arcosh_def [abs_def]
by (intro continuous_on_subset [OF _ assms] continuous_on_ln continuous_on_add
continuous_on_id continuous_on_powr')
(auto dest: pos simp: powr_half_sqrt intro!: continuous_intros)
qed
lemma continuous_on_artanh [continuous_intros]:
assumes "A ⊆ {-1<..<1}"
shows "continuous_on A (artanh :: real ⇒ real)"
unfolding artanh_def [abs_def]
by (intro continuous_on_subset [OF _ assms]) (auto intro!: continuous_intros)
lemma continuous_on_arsinh' [continuous_intros]:
fixes f :: "real ⇒ real"
assumes "continuous_on A f"
shows "continuous_on A (λx. arsinh (f x))"
by (rule continuous_on_compose2[OF continuous_on_arsinh assms]) auto
lemma continuous_on_arcosh' [continuous_intros]:
fixes f :: "real ⇒ real"
assumes "continuous_on A f" "⋀x. x ∈ A ⟹ f x ≥ 1"
shows "continuous_on A (λx. arcosh (f x))"
by (rule continuous_on_compose2[OF continuous_on_arcosh assms(1) order.refl])
(use assms(2) in auto)
lemma continuous_on_artanh' [continuous_intros]:
fixes f :: "real ⇒ real"
assumes "continuous_on A f" "⋀x. x ∈ A ⟹ f x ∈ {-1<..<1}"
shows "continuous_on A (λx. artanh (f x))"
by (rule continuous_on_compose2[OF continuous_on_artanh assms(1) order.refl])
(use assms(2) in auto)
lemma isCont_arsinh [continuous_intros]: "isCont arsinh (x :: real)"
using continuous_on_arsinh[of UNIV] by (auto simp: continuous_on_eq_continuous_at)
lemma isCont_arcosh [continuous_intros]:
assumes "x > 1"
shows "isCont arcosh (x :: real)"
proof -
have "continuous_on {1::real<..} arcosh"
by (rule continuous_on_arcosh) auto
with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
qed
lemma isCont_artanh [continuous_intros]:
assumes "x > -1" "x < 1"
shows "isCont artanh (x :: real)"
proof -
have "continuous_on {-1<..<(1::real)} artanh"
by (rule continuous_on_artanh) auto
with assms show ?thesis by (auto simp: continuous_on_eq_continuous_at)
qed
lemma tendsto_arsinh [tendsto_intros]: "(f ⤏ a) F ⟹ ((λx. arsinh (f x)) ⤏ arsinh a) F"
for f :: "_ ⇒ real"
by (rule isCont_tendsto_compose [OF isCont_arsinh])
lemma tendsto_arcosh_strong [tendsto_intros]:
fixes f :: "_ ⇒ real"
assumes "(f ⤏ a) F" "a ≥ 1" "eventually (λx. f x ≥ 1) F"
shows "((λx. arcosh (f x)) ⤏ arcosh a) F"
by (rule continuous_on_tendsto_compose[OF continuous_on_arcosh[OF order.refl]])
(use assms in auto)
lemma tendsto_arcosh:
fixes f :: "_ ⇒ real"
assumes "(f ⤏ a) F" "a > 1"
shows "((λx. arcosh (f x)) ⤏ arcosh a) F"
by (rule isCont_tendsto_compose [OF isCont_arcosh]) (use assms in auto)
lemma tendsto_arcosh_at_left_1: "(arcosh ⤏ 0) (at_right (1::real))"
proof -
have "(arcosh ⤏ arcosh 1) (at_right (1::real))"
by (rule tendsto_arcosh_strong) (auto simp: eventually_at intro!: exI[of _ 1])
thus ?thesis by simp
qed
lemma tendsto_artanh [tendsto_intros]:
fixes f :: "'a ⇒ real"
assumes "(f ⤏ a) F" "a > -1" "a < 1"
shows "((λx. artanh (f x)) ⤏ artanh a) F"
by (rule isCont_tendsto_compose [OF isCont_artanh]) (use assms in auto)
lemma continuous_arsinh [continuous_intros]:
"continuous F f ⟹ continuous F (λx. arsinh (f x :: real))"
unfolding continuous_def by (rule tendsto_arsinh)
lemma continuous_arcosh_strong [continuous_intros]:
assumes "continuous F f" "eventually (λx. f x ≥ 1) F"
shows "continuous F (λx. arcosh (f x :: real))"
proof (cases "F = bot")
case False
show ?thesis
unfolding continuous_def
proof (intro tendsto_arcosh_strong)
show "1 ≤ f (Lim F (λx. x))"
using assms False unfolding continuous_def by (rule tendsto_lowerbound)
qed (insert assms, auto simp: continuous_def)
qed auto
lemma continuous_arcosh:
"continuous F f ⟹ f (Lim F (λx. x)) > 1 ⟹ continuous F (λx. arcosh (f x :: real))"
unfolding continuous_def by (rule tendsto_arcosh) auto
lemma continuous_artanh [continuous_intros]:
"continuous F f ⟹ f (Lim F (λx. x)) ∈ {-1<..<1} ⟹ continuous F (λx. artanh (f x :: real))"
unfolding continuous_def by (rule tendsto_artanh) auto
lemma arsinh_real_at_top:
"filterlim (arsinh :: real ⇒ real) at_top at_top"
proof (subst filterlim_cong[OF refl refl])
show "filterlim (λx. ln (x + sqrt (1 + x⇧2))) at_top at_top"
by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
filterlim_pow_at_top) auto
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arsinh_real_def add_ac)
lemma arsinh_real_at_bot:
"filterlim (arsinh :: real ⇒ real) at_bot at_bot"
proof -
have "filterlim (λx::real. -arsinh x) at_bot at_top"
by (subst filterlim_uminus_at_top [symmetric]) (rule arsinh_real_at_top)
also have "(λx::real. -arsinh x) = (λx. arsinh (-x))" by simp
finally show ?thesis
by (subst filterlim_at_bot_mirror)
qed
lemma arcosh_real_at_top:
"filterlim (arcosh :: real ⇒ real) at_top at_top"
proof (subst filterlim_cong[OF refl refl])
show "filterlim (λx. ln (x + sqrt (-1 + x⇧2))) at_top at_top"
by (intro filterlim_compose[OF ln_at_top filterlim_at_top_add_at_top] filterlim_ident
filterlim_compose[OF sqrt_at_top] filterlim_tendsto_add_at_top[OF tendsto_const]
filterlim_pow_at_top) auto
qed (auto intro!: eventually_mono[OF eventually_ge_at_top[of 1]] simp: arcosh_real_def)
lemma artanh_real_at_left_1:
"filterlim (artanh :: real ⇒ real) at_top (at_left 1)"
proof -
have *: "filterlim (λx::real. (1 + x) / (1 - x)) at_top (at_left 1)"
by (rule LIM_at_top_divide)
(auto intro!: tendsto_eq_intros eventually_mono[OF eventually_at_left_real[of 0]])
have "filterlim (λx::real. (1/2) * ln ((1 + x) / (1 - x))) at_top (at_left 1)"
by (intro filterlim_tendsto_pos_mult_at_top[OF tendsto_const] *
filterlim_compose[OF ln_at_top]) auto
also have "(λx::real. (1/2) * ln ((1 + x) / (1 - x))) = artanh"
by (simp add: artanh_def [abs_def])
finally show ?thesis .
qed
lemma artanh_real_at_right_1:
"filterlim (artanh :: real ⇒ real) at_bot (at_right (-1))"
proof -
have "?thesis ⟷ filterlim (λx::real. -artanh x) at_top (at_right (-1))"
by (simp add: filterlim_uminus_at_bot)
also have "… ⟷ filterlim (λx::real. artanh (-x)) at_top (at_right (-1))"
by (intro filterlim_cong refl eventually_mono[OF eventually_at_right_real[of "-1" "1"]]) auto
also have "… ⟷ filterlim (artanh :: real ⇒ real) at_top (at_left 1)"
by (simp add: filterlim_at_left_to_right)
also have … by (rule artanh_real_at_left_1)
finally show ?thesis .
qed
subsection ‹Simprocs for root and power literals›
lemma numeral_powr_numeral_real [simp]:
"numeral m powr numeral n = (numeral m ^ numeral n :: real)"
by (simp add: powr_numeral)
context
begin
private lemma sqrt_numeral_simproc_aux:
assumes "m * m ≡ n"
shows "sqrt (numeral n :: real) ≡ numeral m"
proof -
have "numeral n ≡ numeral m * (numeral m :: real)" by (simp add: assms [symmetric])
moreover have "sqrt … ≡ numeral m" by (subst real_sqrt_abs2) simp
ultimately show "sqrt (numeral n :: real) ≡ numeral m" by simp
qed
private lemma root_numeral_simproc_aux:
assumes "Num.pow m n ≡ x"
shows "root (numeral n) (numeral x :: real) ≡ numeral m"
by (subst assms [symmetric], subst numeral_pow, subst real_root_pos2) simp_all
private lemma powr_numeral_simproc_aux:
assumes "Num.pow y n = x"
shows "numeral x powr (m / numeral n :: real) ≡ numeral y powr m"
by (subst assms [symmetric], subst numeral_pow, subst powr_numeral [symmetric])
(simp, subst powr_powr, simp_all)
private lemma numeral_powr_inverse_eq:
"numeral x powr (inverse (numeral n)) = numeral x powr (1 / numeral n :: real)"
by simp
ML ‹
signature ROOT_NUMERAL_SIMPROC = sig
val sqrt : int option -> int -> int option
val sqrt' : int option -> int -> int option
val nth_root : int option -> int -> int -> int option
val nth_root' : int option -> int -> int -> int option
val sqrt_simproc : Proof.context -> cterm -> thm option
val root_simproc : int * int -> Proof.context -> cterm -> thm option
val powr_simproc : int * int -> Proof.context -> cterm -> thm option
end
structure Root_Numeral_Simproc : ROOT_NUMERAL_SIMPROC = struct
fun iterate NONE p f x =
let
fun go x = if p x then x else go (f x)
in
SOME (go x)
end
| iterate (SOME threshold) p f x =
let
fun go (threshold, x) =
if p x then SOME x else if threshold = 0 then NONE else go (threshold - 1, f x)
in
go (threshold, x)
end
fun nth_root _ 1 x = SOME x
| nth_root _ _ 0 = SOME 0
| nth_root _ _ 1 = SOME 1
| nth_root threshold n x =
let
fun newton_step y = ((n - 1) * y + x div Integer.pow (n - 1) y) div n
fun is_root y = Integer.pow n y <= x andalso x < Integer.pow n (y + 1)
in
if x < n then
SOME 1
else if x < Integer.pow n 2 then
SOME 1
else
let
val y = Real.floor (Math.pow (Real.fromInt x, Real.fromInt 1 / Real.fromInt n))
in
if is_root y then
SOME y
else
iterate threshold is_root newton_step ((x + n - 1) div n)
end
end
fun nth_root' _ 1 x = SOME x
| nth_root' _ _ 0 = SOME 0
| nth_root' _ _ 1 = SOME 1
| nth_root' threshold n x = if x < n then NONE else if x < Integer.pow n 2 then NONE else
case nth_root threshold n x of
NONE => NONE
| SOME y => if Integer.pow n y = x then SOME y else NONE
fun sqrt _ 0 = SOME 0
| sqrt _ 1 = SOME 1
| sqrt threshold n =
let
fun aux (a, b) = if n >= b * b then aux (b, b * b) else (a, b)
val (lower_root, lower_n) = aux (1, 2)
fun newton_step x = (x + n div x) div 2
fun is_sqrt r = r*r <= n andalso n < (r+1)*(r+1)
val y = Real.floor (Math.sqrt (Real.fromInt n))
in
if is_sqrt y then
SOME y
else
Option.mapPartial (iterate threshold is_sqrt newton_step o (fn x => x * lower_root))
(sqrt threshold (n div lower_n))
end
fun sqrt' threshold x =
case sqrt threshold x of
NONE => NONE
| SOME y => if y * y = x then SOME y else NONE
fun sqrt_simproc ctxt ct =
let
val n = ct |> Thm.term_of |> dest_comb |> snd |> dest_comb |> snd |> HOLogic.dest_numeral
in
case sqrt' (SOME 10000) n of
NONE => NONE
| SOME m =>
SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n])
@{thm sqrt_numeral_simproc_aux})
end
handle TERM _ => NONE
fun root_simproc (threshold1, threshold2) ctxt ct =
let
val [n, x] =
ct |> Thm.term_of |> strip_comb |> snd |> map (dest_comb #> snd #> HOLogic.dest_numeral)
in
if n > threshold1 orelse x > threshold2 then NONE else
case nth_root' (SOME 100) n x of
NONE => NONE
| SOME m =>
SOME (Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt o HOLogic.mk_numeral) [m, n, x])
@{thm root_numeral_simproc_aux})
end
handle TERM _ => NONE
| Match => NONE
fun powr_simproc (threshold1, threshold2) ctxt ct =
let
val eq_thm = Conv.try_conv (Conv.rewr_conv @{thm numeral_powr_inverse_eq}) ct
val ct = Thm.dest_equals_rhs (Thm.cprop_of eq_thm)
val (_, [x, t]) = strip_comb (Thm.term_of ct)
val (_, [m, n]) = strip_comb t
val [x, n] = map (dest_comb #> snd #> HOLogic.dest_numeral) [x, n]
in
if n > threshold1 orelse x > threshold2 then NONE else
case nth_root' (SOME 100) n x of
NONE => NONE
| SOME y =>
let
val [y, n, x] = map HOLogic.mk_numeral [y, n, x]
val thm = Thm.instantiate' [] (map (SOME o Thm.cterm_of ctxt) [y, n, x, m])
@{thm powr_numeral_simproc_aux}
in
SOME (@{thm transitive} OF [eq_thm, thm])
end
end
handle TERM _ => NONE
| Match => NONE
end
›
end
simproc_setup sqrt_numeral ("sqrt (numeral n)") =
‹K Root_Numeral_Simproc.sqrt_simproc›
simproc_setup root_numeral ("root (numeral n) (numeral x)") =
‹K (Root_Numeral_Simproc.root_simproc (200, Integer.pow 200 2))›
simproc_setup powr_divide_numeral
("numeral x powr (m / numeral n :: real)" | "numeral x powr (inverse (numeral n) :: real)") =
‹K (Root_Numeral_Simproc.powr_simproc (200, Integer.pow 200 2))›
lemma "root 100 1267650600228229401496703205376 = 2"
by simp
lemma "sqrt 196 = 14"
by simp
lemma "256 powr (7 / 4 :: real) = 16384"
by simp
lemma "27 powr (inverse 3) = (3::real)"
by simp
end